56 research outputs found

    The role of cover crops in irrigated systems: water balance, nitrate leaching and soil mineral nitrogen accumulation

    Full text link
    Soil salinity and salt leaching are a risk for sustainable agricultural production in many irrigated areas. This study was conducted over 3.5 years to determine how replacing the usual winter fallow with a cover crop (CC) affects soil salt accumulation and salt leaching in irrigated systems. Treatments studied during the period between summer crops were: barley (Hordeum vulgare L.), vetch (Vicia villosa L.) and fallow. Soil water content was monitored daily to a depth of 1.3 m and used with the numerical model WAVE to calculate drainage. Electrical conductivity (EC) was measured in soil solutions periodically, and in the soil saturated paste extracts before sowing CC and maize. Salt leaching was calculated multiplying drainage by total dissolved salts in the soil solution, and use to obtain a salt balance. Total salt leaching over the four winter fallow periods was 26 Mg ha−1, whereas less than 18 Mg ha−1 in the presence of a CC. Periods of salt gain occurred more often in the CC than in the fallow. By the end of the experiment, net salt losses occurred in all treatments, owing to occasional periods of heavy rainfall. The CC were more prone than the fallow to reduce soil salt accumulation during the early growth stages of the subsequent cash crop

    Proyecto de filtro vegetativo para la reduccion del aporte de sedimento por escorrentia superficial en el embalse de "El Pardo" (Madrid)

    Get PDF
    Que son los filtros vegetativos (VFS)? Áreas de vegetación que reducen el transporte de sedimentos por escorrentía al aumentar la resistencia superficial, deposición de sedimento y la infiltración del agua. Compuestos por césped formado por variedades vegetales con determinadas propiedades. Puede estar también formados p vegetación natural pero no son tan efectivos. Organismos como EPA (US agencia de protección ambiental) USDA (US departamento de agricultura) y NRCS (servicio de conservación de recursos naturales americano los recomiendan

    A quantitative approach to the experimental transmission success of echinostoma friedi (trematoda: echinostomatidae) in rats

    Get PDF
    Using a range of parameters, the ability of rats (Rattus norvegicus) to successfully transmit Echinostoma friedi to the next host was examined under experimental conditions. The concept of Experimental Transmission Success (TM), defined as the number of hosts that become successfully infected after exposure to a number of infective stages produced by a previous host per unit of inoculation at which this latter host was exposed, was introduced. Using data for the egg output and miracidium hatching and infectivity, the TM permits us to estimate the ability of a particular defintive host species to successfully transmit a parasite species. This concept may be also useful to compare the transmission fitness of a parasite in different definitive host species. Moreover, variations of the Experimental Transmission Success over the course of the infection were calculated by the use of the Weekly Experimental Transmission Success (TMW). Overall, considering the complete duration of the experiment, the TM of E. friedi using rats as definitive hosts was 0.68 infected snails/metacercaria. However, positive values of the TMW were only obtained from 2 to 4 wk post-infection, with a maximum during the third wk post-infection. When comparing the TM values of E. friedi in rats with those calculated in hamsters on the basis of previously published data, E. friedi appears to be more appropriate to move through this portion of its life cycle when using hamsters (Mesocricetus auratus) as the final host than rats.Toledo Navarro, Rafael, [email protected] ; Carpena Hernandez, Ines, [email protected] ; Espert Fernandez, Ana M., [email protected] ; Sotillo Gallego, Javier, [email protected] ; Esteban Sanchis, Jose Guillermo, [email protected]

    Beyond precipitation: physiographic gradients dictate the relative importance of environmental drivers on savanna vegetation

    Get PDF
    Background: Understanding the drivers of large-scale vegetation change is critical to managing landscapes and key to predicting how projected climate and land use changes will affect regional vegetation patterns. This study aimed to improve our understanding of the role, magnitude and spatial distribution of the key environmental factors driving vegetation change in southern African savanna, and how they vary across physiographic gradients. Methodology/Principal Findings: We applied Dynamic Factor Analysis (DFA), a multivariate times series dimension reduction technique to ten years of monthly remote sensing data (MODIS-derived normalized difference vegetation index, NDVI) and a suite of environmental covariates: precipitation, mean and maximum temperature, soil moisture, relative humidity, fire and potential evapotranspiration. Monthly NDVI was described by cyclic seasonal variation with distinct spatiotemporal patterns in different physiographic regions. Results support existing work emphasizing the importance of precipitation, soil moisture and fire on NDVI, but also reveal overlooked effects of temperature and evapotranspiration, particularly in regions with higher mean annual precipitation. Critically, spatial distributions of the weights of environmental covariates point to a transition in the importance of precipitation and soil moisture (strongest in grass-dominated regions with precipitation,750 mm) to fire, potential evapotranspiration, and temperature (strongest in tree-dominated regions with precipitation.950 mm). Conclusions/Significance: We quantified the combined spatiotemporal effects of an available suite of environmental drivers on NDVI across a large and diverse savanna region. The analysis supports known drivers of savanna vegetation but also uncovers important roles of temperature and evapotranspiration. Results highlight the utility of applying the DFA approach to remote sensing products for regional analyses of landscape change in the context of global environmental change. With the dramatic increase in global change research, this methodology augurs well for further development and application of spatially explicit time series modeling to studies at the intersection of ecology and remote sensing.This study was funded by National Aeronautics and Space Administration Land-Cover/Land-Use Change Program (NASA LCLUC) Project # NNX09AI25G, titled ‘‘The Role of Socioeconomic Institutions in Mitigating Impacts of Climate Variability and Climate Change in Southern Africa’’, and National Science Foundation Integrative Graduate Education and Research Traineeship (NSF-IGERT) 0504422 Adaptive Management of Water, Wetlands and Watershed

    Hyperspectral reflectance measurements from UAS under intermittent clouds: Correcting irradiance measurements for sensor tilt

    Get PDF
    One great advantage of optical hyperspectral remote sensing from unmanned aerial systems (UAS) compared to satellite missions is the possibility to fly and collect data below clouds. The most typical scenario is flying below intermittent clouds and under turbulent conditions, which causes tilting of the platform. This study aims to advance hyperspectral imaging from UAS in most weather conditions by addressing two challenges: (i) the radiometric and spectral calibrations of miniaturized hyperspectral sensors; and (ii) tilting effects on measured downwelling irradiance. We developed a novel method to correct the downwelling irradiance data for tilting effects. It uses a hybrid approach of minimizing measured irradiance variations for constant irradiance periods and spectral unmixing, to calculate the spectral diffuse irradiance fraction for all irradiance measurements within a flight. It only requires the platform's attitude data and a standard incoming light sensor. We demonstrated the method at the Palo Verde National Park wetlands in Costa Rica, a highly biodiverse area. Our results showed that the downwelling irradiance correction method reduced systematic shifts caused by a change in flight direction of the UAS, by 87% and achieving a deviation of 2.78% relative to a on ground reference in terms of broadband irradiance. High frequency (< 3 s) irradiance variations caused by high-frequency tilting movements of the UAS were reduced by up to 71%. Our complete spectral and radiometric calibration and irradiance correction can significantly remove typical striped illumination artifacts in the surface reflectance-factor map product. The possibility of collecting precise hyperspectral reflectance-factor data from UAS under varying cloud cover makes it more operational for environmental monitoring or precision agriculture applications, being an important step in advancing hyperspectral imaging from UAS.Innovation Fund Denmark/[7048-00001B]/IFD/DinamarcaAgricultural Water Innovations in the Tropics/[]/AgWIT/CanadĂĄUniversidad de Costa Rica/[805-C0-603]/UCR/Costa RicaUCR::VicerrectorĂ­a de Docencia::Ciencias BĂĄsicas::Facultad de Ciencias::Escuela de FĂ­sic

    3DMGAR: A Transient Quasi-3D Point-Source Green–Ampt Infiltration and Redistribution Model

    No full text
    Although Richards’ equation (RE) generally provides a good description of infiltration and water redistribution in soils, its numerical solutions can be computationally intensive or suffer from numerical instability and require extensive soil data. Simplified physically based approaches are often used in many practical settings after validation against RE used as a benchmark. The purpose of this research was to develop and test an approximated physical model for simulating transient point-source infiltration and redistribution in a quasi three-dimensional flow domain. An existing three-dimensional Green–Ampt model that simulates only the infiltration phase is extended based on the one-dimensional modified Green–Ampt with redistribution (MGAR) method to calculate the three-dimensional soil water redistribution phase between point-source events. Comparison with the HYDRUS-2D numerical solution of RE showed the proposed model (3DMGAR) to provide satisfactory results for a broad range of soils. The ability of 3DMGAR to accurately and robustly simulate infiltration and redistribution for point-source water application time series is particularly important for cases with difficult Richards solutions, such as in sandy soils, to improve water application efficiency and decrease chemical leaching in many settings like crop fertigation, waste water disposal, and mitigation of climate-induced coastal salinization
    • 

    corecore