17 research outputs found

    Charged Higgs in 3-3-1 Model Through ee+e^-e^+ Collisions

    Full text link
    In this work we present an analysis of production and signature of charged Higgs bosons H2±H_2^{\pm} in the version of the 3-3-1 model containing heavy leptons at the CLIC (Cern Linear Collider). The production rate is found to be significant for the direct production of ee+H2+H2e^{-} e^{+} \rightarrow H_{2}^{+} H_{2}^{-}. We also studied the possibility to identify it using their respective branching ratios.Comment: 16 pages, 9 Figures. arXiv admin note: substantial text overlap with arXiv:1408.5944; text overlap with arXiv:1311.0845, arXiv:1205.404

    Cosmic ray oriented performance studies for the JEM-EUSO first level trigger

    Get PDF
    JEM-EUSO is a space mission designed to investigate Ultra-High Energy Cosmic Rays and Neutrinos (E > 5 ⋅ 1019 eV) from the International Space Station (ISS). Looking down from above its wide angle telescope is able to observe their air showers and collect such data from a very wide area. Highly specific trigger algorithms are needed to drastically reduce the data load in the presence of both atmospheric and human activity related background light, yet retain the rare cosmic ray events recorded in the telescope. We report the performance in offline testing of the first level trigger algorithm on data from JEM-EUSO prototypes and laboratory measurements observing different light sources: data taken during a high altitude balloon flight over Canada, laser pulses observed from the ground traversing the real atmosphere, and model landscapes reproducing realistic aspect ratios and light conditions as would be seen from the ISS itself. The first level trigger logic successfully kept the trigger rate within the permissible bounds when challenged with artificially produced as well as naturally encountered night sky background fluctuations and while retaining events with general air-shower characteristics

    Bending and Shear Experimental Tests and Numerical Analysis of Composite Slabs Made Up of Lightweight Concrete

    No full text
    The aim of this paper is to understand the structural behaviour of composite slabs. These composite slabs are made of steel and different kinds of concrete. The methodology used in this paper combines experimental studies with advanced techniques of numerical simulations. In this paper, four types of concrete were used in order to study their different structural strengths in composite slabs. The materials used were three lightweight concretes, a normal concrete, and a cold conformed steel deck which has embossments to increase the adherence between concrete and steel. Furthermore, two lengths of slabs were studied to compare structural behaviours between short and long slabs. m-k experimental tests were carried out to obtain the flexural behaviour of the composite slabs. These tests provide dimensionless coefficients to compare different sizes of slabs. Nonlinear numerical simulations were performed by means of the finite element method (FEM). Four different multilinear isotropic hardening laws were used to simulate the four concretes. Coulomb friction contact was used to model the coefficient of friction between steel and concrete. Finally, a chemical bond was included to consider sliding resistance in the contact surface between steel and concrete. Experimental and numerical results are in good agreement; therefore, numerical models can be used to improve and optimize lightweight composite slabs

    Contributions to the 36th International Cosmic Ray Conference (ICRC 2019) of the JEM-EUSO Collaboration

    No full text
    Compilation of papers presented by the JEM-EUSO Collaboration at the 36th International Cosmic Ray Conference (ICRC), held July 24 through August 1, 2019 in Madison, Wisconsin.Comment: links to the 24 papers published in arXi

    First observations of speed of light tracks by a fluorescence detector looking down on the atmosphere

    No full text
    EUSO-Balloon is a pathfinder mission for the Extreme Universe Space Observatory onboard the Japanese Experiment Module (JEM-EUSO). It was launched on the moonless night of the 25th of August 2014 from Timmins, Canada. The flight ended successfully after maintaining the target altitude of 38 km for five hours. One part of the mission was a 2.5 hour underflight using a helicopter equipped with three UV light sources (LED, xenon flasher and laser) to perform an inflight calibration and examine the detectors capability to measure tracks moving at the speed of light. We describe the helicopter laser system and details of the underflight as well as how the laser tracks were recorded and found in the data. These are the first recorded laser tracks measured from a fluorescence detector looking down on the atmosphere. Finally, we present a first reconstruction of the direction of the laser tracks relative to the detector

    EUSO-TA – First results from a ground-based EUSO telescope

    Get PDF
    International audienceEUSO-TA is a ground-based telescope, installed at the Telescope Array (TA) site in Black Rock Mesa, Utah, USA. This is the first detector to successfully use a Fresnel lens based optical system and multi-anode photomultipliers (64 channels per tube, 2304 channels encompassing a 10.6° × 10.6° field of view) for detection of Ultra High Energy Cosmic Rays (UHECR). The telescope is located in front of one of the fluorescence detectors of the TA experiment. Since its installation in 2013, the detector has observed several ultra-high energy cosmic ray events and, in addition, meteors. The limiting magnitude of 5.5 on summed frames ( ∼ 3 ms) has been established. Measurements of the UV night sky emission in different conditions and moon phases and positions have been completed. The performed observations serve as a proof of concept for the future application of this detector technology

    Protein Design: Toward Functional Metalloenzymes

    No full text
    The scope of this Review is to discuss the construction of metal sites in designed protein scaffolds. We categorize the effort of designing proteins into redesign, which is to rationally engineer desired functionality into an existing protein scaffold,(1-9) and de novo design, which is to build a peptidic or protein system that is not directly related to any sequence found in nature yet folds into a predicted structure and/or carries out desired reactions.(10-12) We will analyze and interpret the significance of designed protein systems from a coordination chemistry and biochemistry perspective, with an emphasis on those containing constructed metal sites as mimics for metalloenzymes
    corecore