15 research outputs found

    Decentralised sliding mode control for a class of nonlinear interconnected systems

    Get PDF
    In this paper, a decentralised control strategy based on sliding mode techniques is proposed for a class of nonlinear interconnected systems. Both matched uncertainties in the isolated subsystems and mismatched uncertainties associated with the interconnections are considered. Under mild conditions, sliding mode controllers for each subsystem are designed in a decentralised manner by only employing local information. Conditions are determined which enable information on the interconnections to be employed in decentralised controller design to reduce conservatism. The developed results are applied to an automated highway system. Simulation results pertaining to a high-speed following system are presented to demonstrate the effectiveness of the approach

    State Feedback Sliding Mode Control of Complex Systems with Applications

    Get PDF
    This thesis concerns the development of robust nonlinear control design for complex systems including nonholonomic systems and large-scale systems using sliding mode control (SMC) techniques under the assumption that all system state variables are accessible for design. The main developments in this thesis include: 1). The concept of generalised regular form and design of a novel sliding function. The mathematical definition of generalised regular form is proposed for the first time. It is an extension of the classical regular form, which makes SMC applicable to a wider class of nonlinear systems. A novel sliding function design, which is based on the global implicit function theorem, is proposed to guarantee unique sliding mode dynamics. 2). The development of decentralised SMC for large-scale interconnected systems. For systems with uncertain interconnections which possess the superposition property, a decentralised control scheme is presented to counteract the effect of the uncertainty by using bounds on uncertainties and interconnections. The bounds used in the design are nonlinear functions instead of constant, linear or polynomial functions. The design strategy has also been expanded to a fully nonlinear case for interconnected systems in the generalised regular form. 3). Robust decentralised SMC for a class of nonlinear systems with uncertainties in input distribution. A system with uncertainties in input distribution is full of challenges. A novel method is proposed to deal with such uncertainties for a class of nonlinear interconnected systems. The designed decentralised SMC enhances the robustness of the controlled systems. This thesis also provides case studies of three applications for the proposed approaches. The existence of the generalised regular form is verified in the trajectory tracking control of a wheeled mobile robot (WMR) system. Both simulations and experiments on the WMR are given to demonstrate the validity and effectiveness of the generalised regular form-based SMC design. A continuous stirred tank reactor (CSTR) system and a longitudinal vehicle-following system are used to test the proposed decentralised SMC schemes. An expanded vehicle-following system with both longitudinal and lateral controllers has been developed to demonstrate the robust control design for system with uncertainties in input distribution

    Variable structure attitude control for a rolling aerial vehicle via extended state observer

    Get PDF
    A novel attitude control scheme is proposed for a rolling aerial vehicle (RAV) with large uncertainties. Firstly, the RAV highly coupled nonlinear system is separated into attitude loop and angular loop via backstepping technique. The nominal states are calculated based on the procedure of trajectory linearization control (TLC). Then, extended state observers (ESO) are applied to estimate the uncertainties in the RAV system. Meanwhile, a feedback linearization-based controller is synthesized for the attitude loop using the estimated uncertainties, and an ESO-based sliding mode controller is synthesized for the angular rate loop. The stability of the closed-loop system is studied. Simulation results with comparisons are presented to demonstrate the feasibility of the proposed control scheme

    Nonlinear Sliding Mode Control for Interconnected Systems with Application to Automated Highway Systems

    Get PDF
    In this paper, a decentralised control strategy based on sliding mode techniques is proposed for a class of nonlinear interconnected systems. Both matched uncertainties in the isolated subsystems and mismatched uncertainties associated with the interconnections are considered. Under mild conditions, sliding mode controllers for each subsystem are designed in a decentralised manner by only employing local information. Conditions are determined which enable information on the interconnections to be employed within the decentralised controller design to reduce conservatism. The developed results are applied to an automated highway system. Simulation results pertaining to a high-speed following system are presented to demonstrate the effectiveness of the approach

    Decentralised sliding mode control for nonlinear interconnected systems in the regular form

    Get PDF
    In this paper, a decentralised control strategy based on sliding mode techniques is proposed for a class of nonlinear interconnected systems in regular form. All the isolated subsystems and interconnections are fully nonlinear. It is not required that the nominal isolated subsystems are either linearizable or partially linearizable. The uncertainties are nonlinear and bounded by nonlinear functions. Specifically, uncertainties in the input distribution and interconnections are considered. Under mild conditions, sliding mode controllers for each subsystem are designed by only employing local information. Sufficient conditions are developed under which information on the interconnections is employed for decentralised controller design to reduce conservatism. The bounds on the uncertainties have more general forms compared with previous work. A simulation example is used to demonstrate the effectiveness of the proposed method

    Stabilisation of Time Delay Systems with Nonlinear Disturbances Using Sliding Mode Control

    Get PDF
    This paper focuses on a class of control systems with delayed states and nonlinear disturbances using sliding mode techniques. Both matched and mismatched uncertainties are considered which are assumed to be bounded by known nonlinear functions. The bounds are used in the control design and analysis to reduce conservatism. A sliding function is designed and a set of sufficient conditions is derived to guarantee the asymptotic stability of the corresponding sliding motion by using the Lyapunov-Razumikhin approach which allows large time varying delay with fast changing rate. A delay dependent sliding mode control is synthesised to drive the system to the sliding surface in finite time and maintain a sliding motion thereafter. Effectiveness of the proposed method is demonstrated via a case study on a continuous stirred tank reactor system

    Generalised regular form based SMC for nonlinear systems with application to a WMR

    Get PDF
    In this paper, a generalised regular form is proposed to facilitate sliding mode control (SMC) design for a class of nonlinear systems. A novel nonlinear sliding surface is designed using implicit function theory such that the resulting sliding motion is globally asymptotically stable. Sliding mode controllers are proposed to drive the system to the sliding surface and maintain a sliding mo-tion thereafter. Tracking control of a two-wheeled mobile robot is considered to underpin the developed theoretical results. Model-based tracking control of a wheeled mobile robot (WMR) is first transferred to a stabilisation problem for the corresponding tracking error system, and then the developed theoretical results are applied to show that the tracking error system is globally asymptotically stable even in the presence of matched and mismatched uncertainties. Both experimental and simulation results demonstrate that the developed results are practicable and effective

    Generalised regular form based SMC for nonlinear systems with application to a WMR

    Get PDF
    In this paper, a generalised regular form is proposed to facilitate sliding mode control (SMC) design for a class of nonlinear systems. A novel nonlinear sliding surface is designed using implicit function theory such that the resulting sliding motion is globally asymptotically stable. Sliding mode controllers are proposed to drive the system to the sliding surface and maintain a sliding mo-tion thereafter. Tracking control of a two-wheeled mobile robot is considered to underpin the developed theoretical results. Model-based tracking control of a wheeled mobile robot (WMR) is first transferred to a stabilisation problem for the corresponding tracking error system, and then the developed theoretical results are applied to show that the tracking error system is globally asymptotically stable even in the presence of matched and mismatched uncertainties. Both experimental and simulation results demonstrate that the developed results are practicable and effective

    SARS-associated Coronavirus Transmitted from Human to Pig

    Get PDF
    Severe acute respiratory syndrome–associatedcoronavirus (SARS-CoV) was isolated from a pig during a survey for possible routes of viral transmission after a SARS epidemic. Sequence and epidemiology analyses suggested that the pig was infected by a SARS-CoV of human origin

    Finishing the euchromatic sequence of the human genome

    Get PDF
    The sequence of the human genome encodes the genetic instructions for human physiology, as well as rich information about human evolution. In 2001, the International Human Genome Sequencing Consortium reported a draft sequence of the euchromatic portion of the human genome. Since then, the international collaboration has worked to convert this draft into a genome sequence with high accuracy and nearly complete coverage. Here, we report the result of this finishing process. The current genome sequence (Build 35) contains 2.85 billion nucleotides interrupted by only 341 gaps. It covers ∼99% of the euchromatic genome and is accurate to an error rate of ∼1 event per 100,000 bases. Many of the remaining euchromatic gaps are associated with segmental duplications and will require focused work with new methods. The near-complete sequence, the first for a vertebrate, greatly improves the precision of biological analyses of the human genome including studies of gene number, birth and death. Notably, the human enome seems to encode only 20,000-25,000 protein-coding genes. The genome sequence reported here should serve as a firm foundation for biomedical research in the decades ahead
    corecore