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Abstract: This paper focuses on a class of control systems with delayed states and nonlinear 

disturbances using sliding mode techniques. Both matched and mismatched uncertainties are 

considered which are assumed to be bounded by known nonlinear functions. The bounds are used 

in the control design and analysis to reduce conservatism. A sliding function is designed and a set 

of sufficient conditions is derived to guarantee the asymptotic stability of the corresponding 

sliding motion by using the Lyapunov-Razumikhin approach which allows large time varying 

delay with fast changing rate. A delay dependent sliding mode control is synthesised to drive the 

system to the sliding surface in finite time and maintain a sliding motion thereafter. Effectiveness 

of the proposed method is demonstrated via a case study on a continuous stirred tank reactor 

system. 
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1 Introduction 

Over the past decades, time delay systems as often referred 

to as after-effect systems have been an active area of 

research in a wide range of natural and social sciences. They 

belong to a class of functional differential equations, 

existing widely in the practical world, and are mostly 

encountered in numerous engineering systems such as 

electrical networks, chemical reactors, and hydraulic, 

pneumatic and manufacturing processes to mention but a 

few (Gu et al., 2003; Richard, 2005; Zhao et al., 2015). 

Time delay is usually a source of instability and 

performance degradation in control systems which needs to 

be considered seriously in design, and as such, has received 

considerable attention over the past years, see, e.g., Richard 

(2003), Yan et al. (2014a) and references therein. 

Motivated by recent development in large-scale system 

design, multiple or large time delay arise in systems due to 

vast network complexity. As a result, various techniques 

have been developed in trying to circumvent the effect of 

uncertain dynamical time delay systems (Richard, 2003; 

Yan et al., 2014a; Chen et al., 2017). Linear matrix 

inequality (LMI) techniques are applied in Ramakrishnan 

and Ray (2015) and Wang et al. (2016), but require that the 

considered systems are linear and the nonlinear uncertainty 

satisfy linear growth condition. Lyapunov-Razumikhin 

technique is applied in this paper which focuses on 

developing a robust system with large time delay and fast 

change rate, which has improved the requirement of the 

bounds on the delays compared with recent results (Gao  

et al., 2014; Qi et al., 2017; Jia et al., 2017). In addition, the 

design parameters can be obtained via LMI techniques 

systematically. It should be noted that one method which 

has proved very effective in dealing with uncertainties in the 

system is the sliding mode control due to its strong 

robustness properties against parametric uncertainties and 

external disturbances in the input channel, as well as its 

attractive features such as fast and good transient response 

(Zhen et al., 2014; Edwards and Spurgeon, 1998; Mu et al., 

2017). 

Due to its high robustness, sliding mode control has 

been extended to time delay systems with disturbances, and 

most of the existing results are in combination with other 

techniques such as LMI (Wu et al., 2014), optimal control 

(Nikkhah et al., 2006), adaptive control (Baek et al., 2016), 

decentralised control (Yan et al., 2014b), where the 

common goal is to present less conservative conditions to 

guarantee high performance of systems considered. It 

should be noted that sliding mode control techniques can 

also be used to deal with mismatched uncertainties (Ghabi, 

2018; Yan et al., 2017). 

The problem of sliding mode control for uncertain time 

delay systems has been a continuous area of interest and 

development. Recent work carried out in this area involved 

different technique when compared with traditional sliding 

mode control, e.g., integral sliding surface where the 

reaching phase is eliminated (Cao and Xu, 2004; 

Vaidyanathan and Rhif, 2017), are different from the usual 

or conventional sliding surface which has a reaching phase 

in Edwards and Spurgeon (1998) or that it only considered 

matched uncertainty (Nikkhah et al., 2006), while in Hua  

et al. (2008) and Xu et al. (1997) it is required that the 

bounds on the uncertainties satisfy the linear growth 

condition. Moreover, two main techniques based on 

Lyapunov-Krasovskii functional and Lyapunov-Razumikhin 

function have been largely used to deal with time delay. 

It should be noted that sliding mode control for time 

delay with nonlinear disturbances has been studied in Yan  

et al. (2010) where static output feedback was considered, 

which has strong limitation on the system including the 

bounds on the uncertainties. Cao and Xu (2004) proposed 

the robust sliding mode control of nonlinear uncertain 

systems by analysing the lump estimated disturbances via a 

disturbance observer. Although static output feedback or 

observer-based output feedback controllers have certain 

advantages in real implementation, strong limitations is 

unavoidably required. In reality, sometimes, all the system 

states for example, the position and speed of a mechanical 

system, may be available and thus state feedback will be 

possible, which will largely reduce the limitation of the 

considered system. Moreover, the bounds on uncertainty 

can be much relaxed when compared with output feedback 

design scheme. Optimal guaranteed cost sliding mode 

control of interval type-2 fuzzy time-delay systems was 

proposed in Li et al. (2017) where Lyapunov-Krasovskii 

technique was used to analyse the delay bound. However, 

due to evolving complex systems, developing large time 
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delay bound may be necessary. It should be noted that the 

Lypunov-Krasovskii method usually requires that the time 

varying delay is differentiable and there is limitations on the 

rate of change of time delay. Hence, Lyapunov-Razumikhin 

method which is used for large constant and time varying 

delay is used to circumvent this effect. 

This work proposes a sliding mode control scheme for a 

class of time delay control systems with nonlinear delayed 

disturbances. The assumptions for nonlinear terms are 

imposed on the transformed systems to avoid unnecessary 

conservatism caused by coordinate transformation in 

theoretical analysis. Lyapunov-Razumikhin approach is 

used to derive a set of conditions to guarantee that the 

derived sliding motion is asymptotically stable in the 

presence of time delay. Then under assumption that all the 

system states are accessible, sliding mode control is 

synthesised such that the controlled system is driven to the 

sliding surface in finite time and maintains sliding motion 

thereafter. Case study on a continuous stirred tank reactor 

(CSTR) is provided to show the feasibility of the developed 

results and the effectiveness of the proposed method. The 

main contribution is summarised as follows: 

1 The known bounds on the uncertainties are fully 

applied in the controller design to reject the effects of 

the uncertainties on system performance. 

2 Compared with associated existing work, the proposed 

approach not only allows the bounds on the 

uncertainties have more general nonlinear form but all 

the design parameters relating to the sliding motion can 

be obtained using LMI techniques. 

3 Both matched and mismatched uncertainties are 

considered and the bounds on matched and mismatched 

uncertainties involve time varying delay. 

4 There is no limitation to the change rate of the  

time-varying delay which allows fast changing rate of 

the time varying delay. 

2 Preliminaries 

First, recall some basic linear system theory. Consider a 

linear system 

x Ax Bu= +$  (1) 

where ,n mx u∈ ∈R R  are states and inputs respectively, 

with m < n. The matrix pair (A, B) is of appropriate 

dimensions whereas B is of full rank. Assume that the 

matrix pair (A, B) is controllable. Then from basic matrix 

theory, it can be shown that a coordinate transformation  

z = Tx exists such that the matrix pair (A, B) in the new 

coordinates z has the following structure (Edwards and 

Spurgeon, 1998; Yan et al., 2017): 

11 12

21 22 2

0
,

A A
A B

A A B

⎡ ⎤ ⎡ ⎤
= =⎢ ⎥ ⎢ ⎥
⎣ ⎦ ⎣ ⎦

# #  (2) 

where ( ) ( )
11 ,n m n mA − × −∈R  and 2

m mB ×∈R  is non-singular. 

It should be noted that such a transformation can be 

obtained systematically using matrix theory. Further, from 

Edwards and Spurgeon (1998), the fact that (A, B) is 

controllable implies that (A11, A12) is controllable, and thus 

there exists a matrix ( )m n mM × −∈R  such that the matrix  

A11 � A12M is Hurwitz stable. In order to deal with time 

delay systems, the following well-known Razumikhin 

theorem is required. 

Consider a time-delay system 

( ) ( , ( ( )))x t f t x t d t= −$  (3) 

with an initial condition 

( ) ( ), , 0x t t t d⎡ ⎤= ∈ −⎣ ⎦φ  

where , 0: n
df C+

⎡ ⎤−⎣ ⎦
× UR R  takes (×R bounded sets of 

, 0 )dC⎡ ⎤−⎣ ⎦
 into bounded sets in ;nR  d(t) is the time-varying 

delay and : sup { ( )} .td d t+∈= < ∞
R

 

Lemma 1: [Razumikhin Theorem, Gu et al. (2003)] 

If there exist class ∞K  functions Ȗi(·) with i = 1, 2, a class 

K  function Ȗ3(·) and a continuous function 

1( ) : , nV d +⎡ ⎤⋅ − ∞ ×⎣ ⎦ UR R  satisfying  

( ) ( )1 1 2( , ) , , , nȖ x V t x Ȗ x t d x⎡ ⎤≤ ≤ ∈ − ∞ ∈⎣ ⎦ R  (4) 

such that the time derivative of V1 along the solution of 

system (3) satisfies 

( )1 3( , )V t x Ȗ x≤ −$  (5) 

whenever 

1 1( , ( )) ( , ( ))V t ș x t ș V t x t+ + ≤  (6) 

for any , 0 ,ș d⎡ ⎤∈ −⎣ ⎦  then the system (3) is uniformly 

stable. If, in addition, Ȗ3(Ĳ) > 0 for Ĳ > 0, and there exists a 

continuous non-decreasing function Ȗ4(·) which satisfies 

Ȗ4(Ĳ) > Ĳ for Ĳ > 0 such that inequality (6) is strengthened to 

( )1 3( , )V t x Ȗ x≤ −$  

whenever 

( )1 4 1( , ( )) ( , ( ))V t ș x t ș Ȗ V t x t+ + ≤  (7) 

for any , 0 ,ș d⎡ ⎤∈ −⎣ ⎦  then system (3) is uniformly 

asymptotically stable. 

Lemma 2: (see Yan et al., 2012) 

Let the matrix 1
m nN ×∈R  and vectors mx ∈R  and 

.ny ∈R  Then, the inequality 

1
1 1 22 1

1

2 2
T T T Tx N y x N N N x y N y−≤ +

ε
ε

 (8) 
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holds for any symmetric positive-definite matrix 2
n nN ×∈R  

and any positive constant .ε  

The results above will be used in the subsequent 

analysis. 

3 Problem formulation 

Consider a time varying delay system with delayed 

disturbance described by 

( )( ) ( ), , , ,d d d dx Ax A x B u G t x x F t x x= + + + +$  (9) 

where ȍ (ȍnx ∈ ⊂R  is an neighbourhood of the origin), 

mu ∈R  are the states and inputs respectively; A, n n
dA ×∈R  

and ( )n mB m n×∈ <R  are constant matrices with B being of 

full rank. The vectors ( )G ⋅  and ( )F ⋅  represent the matched 

and mismatched disturbances affecting the system 

respectively. The symbol xd := x(t � d) represents the 

delayed state where d := d(t) is the time varying delay which 

is assumed to be known, continuous, non-negative and 

bounded in : { | 0},t t+ = ≥R  that is 

: sup{ ( )}
t

d d t
+∈

= < ∞
R

 

The initial condition related to the time delay is given by 

( ) ĭ( ), , 0x t t t d⎡ ⎤= ∈ −⎣ ⎦  (10) 

where ĭ(·) is continuous in [ , 0].d−  It is assumed that all 

the nonlinear functions are smooth enough for the 

subsequent analysis, which guarantees that the unforced 

system has unique continuous solutions. 

In this paper, the objective is to design a sliding mode 

control for the system (9) under the assumption that all the 

system states and time delay are available for the design, 

such that the corresponding closed loop system is 

asymptotically stable in the presence of time delay and 

uncertainties, with focus on disturbance tolerability but of 

convenient parameter design methodology. 

4 System analysis and basic assumptions 

In this section, a sliding surface will be designed for  

system (9) and the stability of corresponding sliding motion 

will be analysed. First, it is necessary to impose the 

following fundamental assumptions on the system (9). 

Assumption 1: The matrix pair (A, B) is controllable. 

From Section 2, it follows that under Assumption 1, there 

exists new coordinates 

z Tx=  (11) 

such that in the new coordinates z, the system (9) can be 

described by 

( )
1 11 1 11 1 12 2 12 2

1

( ) ( )

, ,

d d

d

z A z A z t d A z A z t d

F t z z

= + − + + −

+

$
 (12) 

( ) ( )
2 21 1 21 1 22 2 22 2

2 2 2

( ) ( )

( ) , , , ,

d d

d d

z A z A z t d A z A z t d

B u t B G t z z F t z z

= + − + + −

+ + +

$
 (13) 

where z(t) = col(z1, z2) with 1
n mz −∈R  and 2 ,mz ∈R   

zd = col(z1(t � d); z2(t � d)) with 1( ) n mz t d −− ∈R  and 

2 ( ) ,mz t d− ∈R  and 

11 121

21 22

A A
TAT

A A
−

⎡ ⎤
= ⎢ ⎥
⎣ ⎦

 

11 121

21 22 2

0
,

d d
d

d d

A A
TA T TB

A A B
−

⎡ ⎤ ⎡ ⎤
= =⎢ ⎥ ⎢ ⎥
⎣ ⎦ ⎣ ⎦

 

where A11, 
( ) ( )

11 ,n m n m
dA − × −∈R  A12, 

( )
12 ,n m m

dA − ×∈R   

A21, 
( )

21 ,m n m
dA × −∈R  A22, 22 2,m m m m

dA B× ×∈ ∈R R  is  

non-singular, and 

( ) ( ) 1, ( ), ( ) , , |d d x T zG t z t z t G t x x −==  (14) 

( )

( )
( ) 1

1

2

, ( ),
: , ( ), |

, ( ),

d

d x T z

d

F t z t z
TF t x t x

F t z t z
−=

⎡ ⎤
=⎢ ⎥

⎢ ⎥⎣ ⎦
 (15) 

where 1( ) n mF −⋅ ∈R  and 2 ( ) .mF ⋅ ∈R  Specifically, the 

matrix pair (A11, A12) is controllable and thus there exists 

matrix ( )m n mM × −∈R  such that 

11 12A A M−  

is asymptotically stable. Therefore, there exists P > 0 such 

that 

( ) ( )11 12 11 12 0
T

A A M P A A M P− + − <  (16) 

Assumption 2: The uncertain terms G(·), F1(·) and F2(·) in 

(13) satisfy: 

( ) ( ), ( ), , ( ),d dG t z t z t z t z≤ φ  (17) 

( ) ( )1 1, ( ), , ( ),d dF t z t z ȡ t z t z≤  (18) 

( ) ( )2 2, ( ), , ( ),d dF t z t z ȡ t z t z≤  (19) 

where φ(·), ȡ1(·) and ȡ2(·) are known nonnegative continuous 

functions. 

Remark 1. Assumption 2 holds if the uncertainties ( )G ⋅  and 

( )F ⋅  in (9) are bounded by known nonnegative continuous 

functions. In this paper, the bounds on G(·) and F2(·) are 

assumed to be known which will be used in control design 

in order to enhance the robustness against the corresponding 

uncertainties. 
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5 Sliding motion analysis and control design 

Based on the assumptions in Section 4, the main aim of this 

section is to achieve robust stability of system (12)�(13) in 

the presence of disturbances and delay in using sliding 

mode control which guarantees a sliding motion occurs in 

finite time. From Section 2, it follows that under 

Assumption 1, the sliding function is defined as 

1 2( ) ( ) ( )ı z Mz t z t= +  (20) 

where ( )m n mM × −∈R  is a designed matrix which satisfies 

(16). When the system is limited to the sliding surface 

( ) 0ı z =  (21) 

it follows that z2 = �Mz1. 

From the structure of system (12)-(13), the sliding 

motion of system (9) associated with the sliding surface (21) 

is dominated by system (12). When dynamic (12) is limited 

to the sliding surface (21), it can be described by 

( ) ( )

( )
1 11 12 1 11 12 1

1 1 1

( )

, ( ),

d d

į d

z A A M z A A M z t d

F t z t z

= − + − −

+

$
 (22) 

where 

( ) ( ) 2 11 1 1 1, , , , |į d d z MzF t z z F t z z =−=  (23) 

with z = col(z1, z2) and F1(·) defined in (12). 

Remark 2. System (22) is the sliding mode of  

system (12)�(13) corresponding to the sliding surface (21). 

It should be noted that the mismatched uncertainty F1į(·) is 

the uncertainty F1(·) when it is limited to the sliding surface 

(21). 

From equation (22) it is clear to see that the mismatched 

uncertainty F1į(·) can affect the sliding mode dynamics and 

as such it is necessary to impose some constraint on it in 

order to guarantee asymptotic stability of the sliding motion. 

Assumption 3: There exist known function ȝ(·) such that the 

uncertainty F1į(·) in (22) satisfies 

( )1 , , ( , )į d dF t z z ȝ t z z≤  (24) 

The following results are ready to be presented. 

5.1 Stability analysis of sliding motion 

Theorem 1: Under Assumptions 1 and 3, the sliding motion 

of system (12)�(13) associated with the sliding surface (21), 

governed by system (22) is uniformly asymptotically stable 

if there exist a scalar 0>ε  and a real positive definite 

matrix P such that the inequality 

( ) ( )1
min max 1 1

max2 ( ) ( ) 0

T T
o oA P PA k PA P A P

k ȝ P

−+ − −

− ⋅ >

λ λ

λ
 (25) 

holds, where 
max

min

(1 ) ( )
, 0

( )

P
k

P

+
= >

ε
ε

λ
λ

 and ȝ(·) is a known 

non-negative function. 

Proof: For sliding mode (22), consider the candidate 

Lyapunov function 

1 11 ( ) ( )TV z t Pz t=  (26) 

Then the time derivative of V1 along the trajectory of the 

system (22), is given by 

( )

( )
1 (22) 1 1 11 1

1 1 11

| ( ) ( ) 2 ( )

2 ( ) , ( ), ( )

T T T
o o

T
į

V z t A P PA z t z PA z t d

z t PF t z t z t d

= + + −

+ −

$
 (27) 

where A1 = Ad11 � Ad12M and F1į is defined in (23). 

From Lemma 2, it follows that 

1 1 11 1

1
1 11 1

2 ( ) ( ) ( ) ( )

( ) ( )

T T

T T

z t PA z t d z t d Pz t d

z t PA P A Pz t−

− ≤ − −

+
 (28) 

From (27) and (28) it is observed that the derivative V1 

along the trajectory of system (22) can be described by 

[ ]

( )
1 (22) 1 11 1

1
1 1 1 1 11 1 1

| ( ) ( ) ( ) ( )

( ) ( ) 2 , ( ), ( )

T T T
o o

T T T
į

V z t A P PA z t z t d Pz t d

z t PA P A Pz t z PF t z t z t d−

= + + − −

+ + −

$
 (29) 

Applying the Razumikhin condition (see Lemma 1), for 

some positive constant (1 )q = + ε  with 0,>ε  the following 

inequality holds: 

1 11 1( ) ( ) (1 ) ( ) ( )T Tz t d Pz t d z t Pz t− − ≤ + ε  (30) 

From (30), it follows that 

2
min 1 11

2
max 1

( ) ( ) ( ) ( )

(1 ) ( )

TP z t d z t d Pz t d

P z

− ≤ − −

≤ + ε

λ

λ
 (31) 

Thus 

2 2
1 1( )z t d k z− ≤  (32) 

where k is defined in (25). From (24), (29) and (32), 

( )

( )(
)

2 2
1 (22) min 1 1

2 21
max 1 1 max 11

1
min max 1 1

2
max 1

| ( )

2 ( )

( )

2 ( ) ( )

T

T

V Q z k z

PA P A P z k ȝ P z

Q k PA P A P

k ȝ P z

−

−

≤ − +

+ +

= − − −

− ⋅

$ λ

λ λ

λ λ

λ

 (33) 

From (25), it follows that V$  is negative definite. Hence the 

result follows. 

Remark 3. Theorem 1 gives a sufficient condition which 

guarantee the asymptotic stability of the designed sliding 

motion. However, the left hand side of the inequality (25) is 

a function due to ȝ(·), and thus it is difficult to obtain the 

design parameters to complete sliding mode design. In order 

to make the parameters more accessible, the LMI technique 

is used based on the following assumption. 

Assumption 4: There exist known constants �1 and �2 such 

that the uncertainty F1(·) in (12) satisfies 

( ) ( ) 2 2
11 1 2, ( ), , ( ), ( )T T T

d d ddF t z t z F t z t z z t z z≤ +ϖ ϖ  (34) 

Comment [a1]: Author: Please 

confirm if this is correct. 
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Remark 4. Assumptions 2 and 3 are limitations to the 

nonlinear uncertainties. The bounds on G(·) and F2(·) in (17) 

and (19) have general nonlinear form and involve time 

delay. In order to use LMI techniques to obtain the design 

parameters for sliding surface design, Assumption 3 is 

imposed on the mismatched uncertainty F1(·) to facilitate 

the sliding motion analysis. However, it is not required that 

the bounds on uncertainty F  in (9) satisfies linear growth 

condition. This is in comparison with many existing work 

(Gao et al., 2014; Qi et al., 2017; Hua et al., 2008; Xu, 

1997) where sliding mode techniques are employed and 

(Ramakrishnan and Ray, 2015; Wang et al., 2016) where 

LMI is used. 

From (34) and (23), it follows that 

( )

( )

( )

( )

( )( )
( )( )

12
1 11 11

1

12
12 1

1

2 2
1 1 11 1 1 2 1

1 1

2
max 11 1

2
max 12 1

( ) ( )

( )
( ) ( )

( )

( ) ( )

( ) ( )

1

1 ( ) (

TT T
įį

TT

T T T T

T

T T

T T

z
F F z Mz

Mz

z t d
z t d Mz t d

Mz t d

z z z M M z z t d z t d

z t d M M z t d

M M z z

M M z t d z

⎡ ⎤⎡ ⎤⋅ ⋅ ≤ −⎣ ⎦ ⎢ ⎥−⎣ ⎦
⎛ − ⎞⎡ ⎤⎡ ⎤+ − − −⎜ ⎟⎢ ⎥⎣ ⎦ − −⎣ ⎦⎝ ⎠
⎡ ⎤= + + − −⎡⎣ ⎦ ⎣

⎤+ − − ⎦

≤ +

+ + −

ϖ

ϖ

ϖ ϖ

ϖ

ϖ

λ

λ

1 1 2 11 1

)

( ) ( )T T

t d

ȥ z z ȥ z t d z t d

−

≤ + − −

 (35) 

where 

( )[ ]2
1 max1 1 Tȥ M M= +ϖ λ  (36) 

( )[ ]2
2 max2 1 Tȥ M M= +ϖ λ  (37) 

where �1 and �2 are constants satisfying (34). 

Theorem 2: Under Assumptions 1 and 3, the sliding motion 

of system (12)�(13) associated with the sliding surface (21), 

governed by system (22) is uniformly asymptotically stable 

if there exist scalars α > 0, 0>ε  and a real positive definite 

matrix P such that the following LMI holds  

0
oW P

P I

⎡ ⎤
<⎢ ⎥−⎣ ⎦α

 (38) 

where 

1
1 1

11 12

1 11 12

1 2

(1 )T T
o o o

o

d d

W A P PA P PA P A P I

A A A M

A A A M

ȥ ȥ k

−= + + + + +

= −

= −

= +

βα

β

ε

 

where k, ȥ1 and ȥ2 are defined in (25), (36) and (37) 

respectively, and M is defined in (20). 

Proof: Using Lyapunov function (26), the time derivative of 

V1 along the trajectory of the system (22), is given by (27). 

Then from (35) and (32), it follows that 

( )

11

2
1 1 2 11

1 1 2 11 1

1 2 11

( ) ( )

( ) ( ) ( )

( ) ( ) ( ) ( )

( ) ( )

T
įį

T

T T

T

F F

ȥ z t z t ȥ z t d

ȥ z t z t ȥ kz t z t

ȥ ȥ k z t z t

⋅ ⋅

≤ + −

≤ +

= +

 (39) 

where ȥ1 and ȥ2 are defined in (37). 

Using (39), by similar analysis as in Theorem 1, the 

proof of the time derivative of V1(·) is given by 

[ ]

1 (22)

1
1 11 1

1 1 11

1 1

1 1

|

( ) (1 ) ( )

2 , ( ), ( )

( )

0

T T T
o o

T
į

T

į į

V

z t A P PA P PA P A P z t

z PF t z t z t d

z t W P z

F P F

−

=

+ + + +⎡ ⎤⎣ ⎦
+ −

⎡ ⎤ ⎡ ⎤ ⎡ ⎤
= ⎢ ⎥ ⎢ ⎥ ⎢ ⎥
⎣ ⎦ ⎣ ⎦ ⎣ ⎦

$

ε

 (40) 

where 

1
1 1(1 ) , 0T T

o oW A P PA P PA P A P−= + + + + >ε ε  (41) 

The inequality (39) can be rewritten as 

1 1

1 1

( ) 0
0

0

T

į į

z t I z

F I F

⎡ ⎤ ⎡ ⎤ ⎡ ⎤
≥⎢ ⎥ ⎢ ⎥ ⎢ ⎥−⎣ ⎦ ⎣ ⎦ ⎣ ⎦

β
 (42) 

where β = ȥ1 + ȥ2k. 

It can be seen from (40) and (42) that, 

1 1

1 (22)

1 1

1 1

1 1

1 1

1 1

( ) 0 ( )
|

0 0

( )

( )

T

į į

T

į į

T
o

į į

z t W P I z t
V

F P I F

z t W I P z

F P I F

z t W P z

F P I F

⎛ ⎞⎡ ⎤ ⎡ ⎤ ⎡ ⎤ ⎡ ⎤
≤ +⎜ ⎟⎢ ⎥ ⎢ ⎥ ⎢ ⎥ ⎢ ⎥−⎣ ⎦ ⎣ ⎦ ⎣ ⎦ ⎣ ⎦⎝ ⎠

+⎡ ⎤ ⎡ ⎤ ⎡ ⎤
= ⎢ ⎥ ⎢ ⎥ ⎢ ⎥−⎣ ⎦ ⎣ ⎦ ⎣ ⎦

⎡ ⎤ ⎡ ⎤ ⎡ ⎤
= ⎢ ⎥ ⎢ ⎥ ⎢ ⎥−⎣ ⎦ ⎣ ⎦ ⎣ ⎦

$ β
α

βα

α

α

 (43) 

where α is a positive constant, Wo and W are defined by (38) 

and (41) respectively. By applying inequality (38) to (43), it 

follows that V$  is negative definite. Hence the result 

follows. 

Remark 5. It should be noted that the inequality in (25) in 

Theorem 1 involves function ȝ(·) which makes it difficult to 

determine the design parameters, although Theorem 1 is less 

conservative. In connection with this, a set of conditions has 

been expressed in LMI to guarantee the stability of sliding 

motion and thus, the associated design parameters can be 

obtained systematically using LMI techniques. This is in 

comparison with the work (Yan et al., 2010). 

Remark 6. From the proof of Theorem 2, it follows that it is 

unnecessary to assume that the bound on the uncertainty 

F1(t, z(t), zd(t)) has the special form in (34). Actually, it is 

only required that the bound on F1į(·) defined in (35) has the 

special form in (34). Therefore, in this paper, the 

requirement on the bound on mismatched uncertainty is 

relaxed which is allowed to have more general form. 
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5.2 Sliding mode control design 

The objective now is to design a state feedback sliding 

mode control law such that the system state is driven to the 

sliding surface (21) in finite time. The following control is 

proposed: 

( ){(
} )

1
2 1 12

2

( ) ī , ( ), ( )

( ) sgn( ( ))

du t B B t z t z M ȡ

ȡ Ș ı z

−= − + + ⋅

+ ⋅ +

φ
 (44) 

where 

( ) ( )

( ) ( )
11 21 1 11 21 1

12 22 2 21 22 2

ī ( ) ( )

( ) ( )

d d

d d

MA A z t MA A z t d

MA A z t MA A z t d

= + + + −

+ + + + −
 (45) 

φ(·), ȡ1(·) and ȡ2(·) in (17)�(19) are defined respectively and 

Ș > 0 is the reachability constant. The following result is 

ready to be presented. 

Theorem 3: Consider the system (12)�(13). The control (44) 

drives the system (12)�(13) to the sliding surface (21) in 

finite time and maintains a sliding motion on it thereafter. 

Proof: From (20) and (12)�(13), it can be verified that 

(

( ))
(

) ( )

( ))
( ) ( )

( )

11 1 11 1

12 2 12 2 1

21 1 21 1 22 2

22 2

2

1

2

( ) ( )

( ) , ( ),

( )

( ) ( ) , ( ),

, ( ),

ī ( ) , ( ), , ( ),

, ( ),

d

d d

d

d d

d

d d

d

ı z M A z A z t d

A z A z t d F t z t z

A z A z t d A z

A z t d Bu t BG t z t z

F t z t z

Bu t BG t z t z MF t z t z

F t z t z

= + −

+ + − +

+ + − +

+ − + +

+

= + + +

+

$

 (46) 

where ī is defined in (45). 

Applying the control u in (44) to (46), it follows from 

(17) and (19), 

( )

{ ( ) ( )

( ) } ( )

( )

( ) ( )

( ) ( )

( )

1

1

2

2

1 1

2

( )ī ( ) , ( ),

( ) ī , ( ), , ( ),

, ( ), sgn( ) , ( ),

, ( ),

( ) , ( ), ( ) , ( ),

( ) , ( ), , ( ),

( ) , ( ), , ( ),

Ĳ Ĳ Ĳ
d

Ĳ
d d

d d

d

Ĳ
d d

Ĳ
d d

Ĳ
d

ı ı ı z ı z MF t z t z

ı z M ȡ t z t z B t z t z

ȡ t z t z Ș ı BG t z t z

F t z t z

ı z MF t z t z ı z M ȡ t z t z

ı z BG t z t z ı B t z t z

ı z F t z t z ı ȡ t z t z

= −

⎡− + +⎣
+ + +

+

= −

+ −

+ −

$

φ

φ

( )

( ) ( )

( ) ( )

( ) ( )

1 1

2

( )

( ) , ( ), ( ) , ( ),

( ) , ( ), , ( ),

( ) , ( ), , ( ),

( )

d

Ĳ
d d

Ĳ
d d

Ĳ
d d

Ș ı z

ı z MF t z t z ı z M ȡ t z t z

ı z BG t z t z ı B t z t z

ı z F t z t z ı ȡ t z t z

Ș ı z

−

≤ −

+ −

+ −

≤ −

φ

 (47) 

where the fact that ıĲ(z)sgn(ı(z)) ≥ ||ı(z)|| (see Yan et al., 

2010) is used to obtain the inequality above. 

This shows that the reachability condition holds and 

hence the conclusion follows. 

Theorems 1 and 2 together show that the corresponding 

closed-loop system is uniformly asymptotically stable. 

Remark 7. It should be noted that the designed controller 

(44) is expressed in z coordinates. The corresponding 

controller in x coordinates is easy to obtain using the 

transformation z = Tx in (11) which can be obtained using 

basic matrix theory (Edwards and Spurgeo, 1998). The 

reachability analysis above is carried out directly in  

z coordinates, which may reduce the conservatism. It should 

be noted that there is no limitation to the change rate of time 

varying delay d(t). This is in comparison with many existing 

work (Jia et al., 2017). 

6 Application and simulation results 

Consider the cascaded CSTR system in Hua et al. (2009) 

which is used to illustrate the effectiveness of the developed 

method in this paper. The compositions CA and CB of the 

produce streams from reactor A and reactor B, represents 

the system states which are to be controlled. The output of 

one reactor CSTR determines the flow rate into the second 

reactor and vice versa. 

A time delay is added between the output of one reactor 

and the input (flow rate) of the other reactor such that at a 

certain time, the state of one reactor is determined by the 

state of the other reactor at a previous time t � d(t). Refer to 

Hua et al. (2009) for more information on CSTR. By 

choosing the same parameters as in Hua et al. (2009), the 

mathematical model to describe the CSTR is given by 

( )1 1 1 2 10.5 ( ) , , dz z z t d z F t z z= − − − + +$  (48) 

( )( ) ( )
2 1 1 2 2

2

( ) 2.8333 ( )

, ( ), , ,d d

z z z t d z z t d

u G t z t z F t z z

= + − − + −

+ + +

$
 (49) 

where * *
1 2: , :A A B Bz C C z C C= − = −  and * 14 / 9AC =  and 

* 7 / 3BC =  (see Hua et al., 2009). 

It should be noted that the uncertainties G(·) and F1(·) 

and F2(·) are added in system (48)�(49) specifically to 

illustrate the obtained theoretical results, which are assumed 

to satisfy 

( )
( )

1 2

, ( ),

, ( ), 5 sin( ) ( ) ( )

d

d

t z t z

G t z t z t z t z t d≤ −'****(****)
φ

 

( )
( )

2 2

, ( ),

, ( ), 5 cos( ) ( )

d

d

ȡ t z t z

F t z t z t z t d≤ −'***(***)  

and F1(·) satisfies 

m m
1 2

2 2
11 0.86 0.65T T T

d ddF F z z z z≤ +
ϖ ϖ

 

Choose the sliding function m( ) 2 1 .
M

ı z z= ⎡ ⎤
⎢ ⎥⎣ ⎦

 By direct 

calculation, Ao = �3, A1 = �0.5. With Q = I and P = 0.1667 

obtained by solving the LMI in (43), = 0:07, and α = 5.5781 

is the maximum boundary which ensures that 
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0.3995 0.1667
0

0.1667 0.0700

oW P

P I

−⎡ ⎤ ⎡ ⎤
= <⎢ ⎥ ⎢ ⎥− −⎣ ⎦ ⎣ ⎦α

 (50) 

Thus the matrix (38) is symmetric negative definite. 

From the result above, it can be verified that all the 

conditions in Theorem 1 are satisfied. Thus from  

Theorem 1, the sliding motion associated with the sliding 

surface is asymptotically stable. 

Figure 1 Time response of state variables z1(t) and z2(t) of 

system (48)�(49) (see online version for colours) 

 

Figure 2 Time response of the control signal u(t) and sliding 

function ı(z) (see online version for colours) 

 

From Theorem 2 and by direct calculation, the sliding mode 

control law (44) given by 

(
)

2 2
( ) 2

1 2

ī 1.3778 ( ) 0.845 1.5cos( )

5sin( ) ( ) 2 sgn( ( ))

d t d

d

u z t z t z

t z t z ı z

= − + +

+ +
 

stabilises the system (48)�(49), where 

1 2 2ī 2 ( ) 0.833 ( ) 3 ( )z t z t z t d= − − + −  

For simulation purposes, the initial condition relating to the 

time delay is chosen as z(t) = col(sin(t), et
) and the time 

delay is d(t) = 5 � 3sint. The time responses of the state 

variables and control signal are shown in Figures 1 and 2, 

respectively, which demonstrate that the proposed approach 

is effective. 

7 Conclusions 

In this paper, state feedback sliding mode control for a class 

of time delay systems has been considered, where time 

delay exists in both system states and disturbances. 

Conservatism is reduced by fully using the property that 

sliding mode dynamics are of reduced order, and using the 

Razumikhin approach, the developed results can 

accommodate the large time delays. Also, it has been shown 

that though the uncertainty bounds are nonlinear, they can 

be obtained using LMI technique. Sliding mode control has 

been designed to guarantee the systems reachability to the 

sliding surface, and the nonlinear bounds on uncertainties 

have been fully employed in control design. The results of 

the simulation verify the theoretical analysis and further 

illustrate the feasibility of the proposed methodology, 

through application to the control problem of the CSTR 

system. However, as systems become larger and more 

complicated, it is interesting to consider large time delays in 

interconnected systems in the future. 
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