
Kent Academic Repository
Full text document (pdf)

Copyright & reuse

Content in the Kent Academic Repository is made available for research purposes. Unless otherwise stated all

content is protected by copyright and in the absence of an open licence (eg Creative Commons), permissions 

for further reuse of content should be sought from the publisher, author or other copyright holder. 

Versions of research

The version in the Kent Academic Repository may differ from the final published version. 

Users are advised to check http://kar.kent.ac.uk for the status of the paper. Users should always cite the 

published version of record.

Enquiries

For any further enquiries regarding the licence status of this document, please contact: 

researchsupport@kent.ac.uk

If you believe this document infringes copyright then please contact the KAR admin team with the take-down 

information provided at http://kar.kent.ac.uk/contact.html

Citation for published version

UNSPECIFIED   UNSPECIFIED    In: UNSPECIFIED.

DOI

Link to record in KAR

http://kar.kent.ac.uk/59914/

Document Version

UNSPECIFIED

CORE Metadata, citation and similar papers at core.ac.uk

Provided by Kent Academic Repository

https://core.ac.uk/display/74209636?utm_source=pdf&utm_medium=banner&utm_campaign=pdf-decoration-v1


Decentralised Sliding Mode Control for Nonlinear Interconnected

Systems in the Regular Form

Jianqiu Mu1, Xing-Gang Yan1, Sarah K. Spurgeon1 and Zehui Mao2

Abstract— In this paper, a decentralised control strategy
based on sliding mode techniques is proposed for a class
of nonlinear interconnected systems in regular form. All the
isolated subsystems and interconnections are fully nonlinear.
It is not required that the nominal isolated subsystems are
either linearizable or partially linearizable. The uncertainties
are nonlinear and bounded by nonlinear functions. Specifically,
uncertainties in the input distribution and interconnections are
considered. Under mild conditions, sliding mode controllers
for each subsystem are designed by only employing local
information. Sufficient conditions are developed under which
information on the interconnections is employed for decen-
tralised controller design to reduce conservatism. The bounds
on the uncertainties have more general forms compared with
previous work. A simulation example is used to demonstrate
the effectiveness of the proposed method.

I. INTRODUCTION

In engineering, large scale systems are often modelled as

a collection of subsystems with interconnections, e.g. multi-

machine power systems (e.g. see [18], [4]), power networks

and energy systems (e.g. see [13]). Due to the complex

dynamics caused by nonlinearity in the interconnections and

subsystems, it is difficult to control such systems using

classical methods. In reality, since such class of systems are

usually distributed in different space, a centralised strategy

can be difficult to motivate [20], [19] as the control for

each subsystem requires all the information on the other

subsystems and the control performance is highly depen-

dent on efficient and reliable information exchange between

subsystems. The reliability of information transfer among

subsystems can be greatly affected by problems such as

network failure or blockage of communication channels.

Besides, time delay caused during the transfer process in

the network may also reduce the system performance even

if the communication channels are unimpeded. Therefore, the

development of decentralised control strategies in which each

subsystem is controlled independently is of interests. Since

in decentralised strategy, the control of each subsystem only

requires local information, which not only enhances system

reliability but also reduces the costs of communication

networks and their maintenance.

For nonlinear systems, it is well known that uncertainties

or modelling errors may seriously affect control system per-
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formance. In nonlinear interconnected systems, the effect of

uncertainties on the whole system is even more challenging.

To be specific, uncertainties experienced by a subsystem

will affect not only its own performance but also the other

subsystems’ through the interactions between subsystems.

Designing a decentralised control scheme to reject or reduce

the effect of uncertainties in the interconnection terms is

challenging. Sliding mode control has been recognised as

a powerful approach in dealing with nonlinear systems with

uncertainties [16] owing to its special structure and complete

robustness against matched uncertainties [3], [16]. In [21], it

is shown that the sliding mode approach can be used to deal

with the systems in the presence of unmatched uncertainty.

Methods proposed by Niu in [12] and [11] also show the

strong robustness of sliding mode control for uncertain

system. Therefore, many researchers have tried to develop

a decentralised sliding mode control strategy for large scale

system in the presence of uncertainties and interconnections.

However, as the information available to the controllers of

each subsystem is limited in a decentralised strategy, it is

difficult to reject the uncertainties within the interconnections

even if they are matched [17].

For robust decentralised controller design problems, many

results have been obtained using various methods. In [14],

[1], [6], [9], robust control strategy is used for the inter-

connected system. However, only matched uncertainties are

considered and the bounds on the matched uncertainties are

assumed to be linear or polynomial. In [21], mismatched

uncertainties are considered with centralised dynamical feed-

back controllers which need more resources to exchange

information between subsystems. In [15], a decentralised

state feedback controller is proposed for systems with a class

of constraints called integral quadratic constraints to limit

the structure of the original system. In some cases, adaptive

techniques are applied to estimate an upper bound on the

mismatched uncertainty, and this is used to counteract the

effects of uncertainty [2]. This approach is powerful for the

case where the uncertainty satisfies a linear growth condition.

In terms of mismatched uncertainties, it is inevitable to

impose some limitations in order to achieve asymptotic

stability. After transforming the system into a special tri-

angular structure, the uncertainties of the system in [7] have

more general forms when compared with previous work. For

uncertainties in the input distribution, the existing research

is limited. In [12] and [11], sliding mode control design is

proposed for systems with uncertainties in the control matrix.

However, the uncertainties in [12], [11] are assumed to have

a particular structure, for example, the uncertainty is required



to lie in the range of the control input distribution matrix. In

most previous work, the nominal part of the system is usually

assumed to be linear, which limits the application of the

obtained results. In [8], a decentralised quantitative feedback

control is proposed for a class of large-scale systems in the

presence of uncertainties in the state-space matrices, and

the work has also been implemented on a SCARA robot

system. However, both the nominal part of the system and

the interconnection between subsystem are assumed to be

linear.

In this paper, a nonlinear decentralised control strategy

for a class of nonlinear interconnected systems is proposed

based on a sliding mode control paradigm. Compared with

previous work in [10], the interconnected system is assumed

to be fully nonlinear with unknown interconnections and

uncertainties in the input distribution term. Moreover, the

uncertainties are assumed to be bounded by known functions

which are employed in the control design to counteract the

effects of the uncertainties on the controlled interconnected

system. The bounds on the uncertainties take more general

forms when compared with existing work. A set of sufficient

conditions is developed such that the corresponding sliding

motion is asymptotically stable when the system is restricted

to the designed sliding surface. Then, a decentralised sliding

mode control is designed to drive the interconnected system

to the sliding surface in the presence of uncertainties. It is

also shown that if the uncertainties/interconnections possess

a superposition property, a decentralised control scheme may

be designed to counteract the effect of the uncertainty. A

numerical example is presented with simulation results to

show the effectiveness of the approach proposed.

II. SYSTEM DESCRIPTION

Consider a class of nonlinear large-scale interconnected

systems composed of N subsystems where the i-th subsys-

tem can be transformed or described by

ẋai =fai (t, x
a
i , x

b
i ) + ψa

i (t, x) (1)

ẋbi =f
b
i (t, xi) + (gi(t, xi) + φi(t, xi))ui + ψb

i (t, x) (2)

where the state variables of the i-th subsystem are repre-

sented by xi := col(xai , x
b
i ) ⊂ Ωi ∈ Rni where xai ∈

Rni−mi , xbi ∈ Rmi and x = col(x1, x2, . . . , xN ). ui ∈ Rmi

denote inputs of the i-th subsystem respectively for i =
1, 2, . . . , N . The function fai (·), f

b
i (·) with fai (t, 0, 0) = 0

and f bi (t, 0) = 0 and the function matrix gi(·) are contin-

uous with appropriate dimensions. Uncertainty in the input

distribution is denoted by φi(t, xi). The nonlinear functions

ψa
i (t, x) ∈ Rni−mi and ψb

i (t, x) ∈ Rmi represents the

uncertain interconnection. It is assumed that all the nonlinear

functions are sufficiently smooth such that the unforced

system has a unique continuous solution.

In this paper, the focus is to design a decentralised control

scheme to stabilise system (1)-(2) under the assumptions that

the isolated nominal system has the desired performance. The

following basic assumptions are imposed on the uncertainties

of the system (1)-(2).

Assumption 1. There exist known continuous functions

δaij(·), δ
b
i (·) and ρi(·) in R+ with δaij(t, 0) = 0 such that

(i) ‖ψa
i (t, x)‖ ≤

n∑

j=1

δaij(‖xj‖) (3)

(ii)
∥
∥ψb

i (t, x)
∥
∥ ≤ δbi (t, x) (4)

(iii) ‖φi(t, xi)‖ ≤ ρi(t, xi) (5)

for all t ∈ R+, xi ∈ Ωi.

Assumption 2. The function matrix gi(t, xi) is nonsingular

for any (t, xi) ∈ R+ × Ωi, and the uncertainty φi(t, xi) in

system (2) satisfies

g−1
i (t, xi)φi(t, xi) + φτi (t, xi)

(
g−1
i (t, xi)

)τ
≥ 0 (6)

for all t ∈ R+, xi ∈ Ωi.

Remark 1. Assumption 2 is made on the uncertainties in

the input distribution term. It will be shown that a class

of uncertainties in the input distribution can be rejected by

designing an appropriate control. Comparing with existing

work, e.g. see [12], [11], [8], the uncertainties in the input

distribution are nonlinear instead of linear. It is emphasised

that the uncertainties φi(·) are not required to be matched,

and only gbi (·) is required to be nonsingular for t ∈ R+,

xi ∈ Ωi.

Since φi(t, xi) are the uncertainties in the input dis-

tribution, their effects are closely related to the control

signal ui for i = 1, 2, . . . , N . This can be seen from the

terms φi(t, xi)ui in system (2). Therefore, the uncertainties

existing in the input distribution make the control design

much more difficult. This paper will present an approach

to deal with nonlinear uncertainties in the input distribution

when the input distribution is nonlinear.

III. STABILITY ANALYSIS OF THE SLIDING MODE

Choose the local sliding surface for the ith subsystem of

the large-scale interconnected system (1)-(2) as follows:

σi(xi) ≡: xbi = 0, i = 1, 2, . . . , N. (7)

Then, the composite sliding surface for the interconnected

system (1)-(2) is chosen as

σ(x) = 0 (8)

where σ(x) ≡: col
(
xb1, x

b
2, . . . , x

b
N

)
. During sliding motion,

xbi = 0 for i = 1, 2, . . . , N . Then, the sliding mode dynamics

for the system (1)-(2) associated with the designed sliding

surface (8) can be described by

ẋai = fai (t, x
a
i , 0) + ψs

i (t, x
a
1 , x

a
2 , . . . , x

a
N ) (9)

where

ψs
i (t, x

a
1 , x

a
2 , . . . , x

a
N ) := ψa

i (t, x)|(xb

1
,xb

2
,...,xb

N
)=0 (10)

with ψa
i (t, x) defined in (1).



Lemma 1. For terms ψs
i (t, x

a
1 , x

a
2 , . . . , x

a
N ) in system (9), if

inequality (3) in Assumption 1 holds, then

‖ψs
i (t, x

a
1 , x

a
2 , . . . , x

a
N )‖ ≤

N∑

j=1

δaij(‖x
a
j ‖) (11)

where xa = col(xa1 , x
a
2 , . . . , x

a
N ) and δij(·) satisfy (3).

Proof. From the definition of ψs
i (·) in (10), it follows that

ψs
i (t, x

a
1 , x

a
2 , . . . , x

a
N ) = ψa

i (t, x
a
1 , 0, x

a
2 , 0, . . . , x

a
N , 0) (12)

From (3) in Assumption 1,

‖ψa
i (t, x)‖ ≤

N∑

j=1

δaij(‖xj‖) (13)

From (12) and (13), it follows that

‖ψs
i (t, x

a
1 , x

a
2 , . . . , x

a
N )‖ = ‖ψa

i (t, x
a
1 , 0, x

a
2 , 0, . . . , x

a
N , 0)‖

≤

N∑

j=1

δaij(‖x
a
j ‖) (14)

Hence the result follows. �

Assumption 3. There exist continuous C1 function Vi :
R+ ×Rni−mi → R+ and functions ςi1(·), ςi2(·), ςi3(·) and

ςi4(·) of class K such that for all xi ∈ Ωi and t ∈ R+

(i) ςi1(‖x
a
i ‖) ≤ Vi(t, x

a
i ) ≤ ςi2(‖x

a
i ‖)

(ii)
∂Vi(t, x

a
i )

∂t
+
∂Vi(t, x

a
i )

∂xai
fai (t, x

a
i , 0)

≤ −ς2i3(‖x
a
i ‖)

(iii)

∥
∥
∥
∥

∂Vi(t, x
a
i )

∂xai

∥
∥
∥
∥
≤ ςi4(‖x

a
i ‖)

where

∂Vi(t, x
a
i )

∂xai
=

(
∂Vi(t, x

a
i )

∂xa1
,
∂Vi(t, x

a
i )

∂xa2
. . .

∂Vi(t, x
a
i )

∂xan

)

Theorem 1. Under assumptions 1-3, the sliding mode (9) of

the system (1)-(2) associated with the sliding surface in (8)

is asymptotically stable if there exists a domain Ωxa of the

origin in xa ∈ R
∑

N

i
(ni−mi) such that

M(t, x)T +M(t, x) > 0

in domain Ωxa\{0} with M(t, x) = (mij(t, xi, xj))N×N

and for i, j = 1, 2, . . . , N

mij(t, xi, xj) =

{

µi3(‖x
a
i ‖)− µi4(‖x

a
i ‖)γii(‖x

a
i ‖), i = j

− µi4(‖x
a
i ‖)γij(‖x

a
j ‖), i 6= j

where µi3(·), µi4(·) and γij(·) are defined respectively by

µi3(x) =

∫ 1

0

∂ςi3(xτ)

∂τ
dτ (15)

µi4(x) =

∫ 1

0

∂ςi4(xτ)

∂τ
dτ (16)

γij(x) =

∫ 1

0

∂δaij(xτ)

∂τ
dτ (17)

Proof. From (15)-(17), it can be observed that

ςi3(‖x
a
i ‖) =µi3(‖x

a
i ‖)‖x

a
i ‖ (18)

ςi4(‖x
a
i ‖) =µi4(‖x

a
i ‖)‖x

a
i ‖ (19)

δaij(‖x
a
i ‖) =γij(‖x

a
i ‖)‖x

a
i ‖ (20)

From the analysis above, it is seen that the system (9)

represents the sliding mode dynamics of the system (1)-(2)

corresponding to the sliding surface (8).

For system (9), consider the Lyapunov function candidate

V (t, xai ) =

N∑

i=1

Vi(t, x
a
i ) (21)

where Vi(t, x
a
i ) is given by Assumption 3. Then, the time

derivative of V (t, xai ) along equation (9) is given by

V̇ =
N∑

i=1

{∂Vi(t, x
a
i )

∂t
+
∂Vi(t, x

a
i )

∂xai
fai (t, x

a
i , 0)

+
∂Vi(t, x

a
i )

∂xai
ψa
i (t, x)

}

≤
N∑

i=1

{

− ς2i3(‖x
a
i ‖) + ςi4(‖x

a
i ‖)

N∑

j=1

δij(‖x
a
j ‖)

}

=−

N∑

i=1

µ2
i3(‖x

a
i ‖)‖x

a
i ‖

2

+

N∑

i=1

N∑

j=1

µi4(‖x
a
i ‖)γij(‖x

a
j ‖)‖x

a
i ‖‖x

a
j ‖

=−
1

2
(‖xa1‖, ‖x

a
2‖, . . . , ‖x

a
N‖)

(
MT +M

)








‖xa1‖
‖xa2‖

...

‖xaN‖








Since the matrix function MT +M in Ωxa\{0} is positive

definite, therefore, it follows that V is a negative definite

function in Domain Ωxa . Hence, the results follow. �

IV. DECENTRALISED CONTROL DESIGN

For the nonlinear interconnected system (1)-(2), the corre-

sponding reachability condition is described by (e.g. see [5],

[17])
N∑

i=1

στ
i (xi)σ̇i(xi)

‖σi(xi)‖
< 0 (22)

where σi(xi) is defined by (7). In order to reduce the

effects of the unknown interconnection ψb
i (·), consider the

expression

δbi (t, x) =

N∑

j=1

ηij(t, xj) + νi(t, x) (23)

where δbi is defined in (4) and νi(t, x) represents all the

coupling terms which cannot be included in the term
∑N

j=1 ηij(t, xj) Consider the decentralised control

ui = uai + ubi (24)



where

uai =− g−1
i (t, xi)f

b
i (t, xi)

− g−1
i (t, xi)sgn(xbi )

{ N∑

j=1

ηji(t, xi) + ζi(t, xi)
}

(25)

ubi =− g−1
i (t, xi)sgn(xbi ) ‖u

a
i ‖ ρi(t, xi) (26)

where the ρi(t, xi) are defined in Assumption 1, and

ηji(t, xi) satisfy (23). The term ζi(t, xi) is a reachability

function which can be considered as a design parameter to

be defined.

Theorem 2. Consider the nonlinear interconnected system

(1)-(2). Under Assumptions 1-3, the closed-loop system (1)-

(2) with the decentralised control (24) is converged to the

composite sliding surface (8) and maintain a sliding motion

on it thereafter if in the considered domain Ω = Ω1×Ω2 · · ·×
ΩN , the functions ζi(t, xi) in (25) satisfy

N∑

i=1

ζi(t, xi) >

N∑

i=1

νi(t, x) (27)

in Ω for all t > 0 with νi(t, x) defined in (23).

Proof. From (7), for i = 1, 2, . . . , N

σ̇i(xi) =f
b
i (t, xi) + (gbi (t, xi) + φi(t, xi))(u

a
i + ubi )

+ ψb
i (t, x) (28)

Substituting (25)-(26) into (28),

N∑

i=1

στ
i (xi)σ̇i(xi)

‖σi(xi)‖

=
N∑

i=1

{ (xbi )
τ

‖xbi‖

{
δbi (t, x) + φi(t, xi)u

a
i

}

−
(xbi )

τ

‖xbi‖
φi(t, xi)

(
gbi (t, xi)

)−1
‖uai ‖ρi(t, xi)sgn(xbi )

−
N∑

j=1

µji(t, xi)− ζi(t, xi)− ‖uai ‖ρi(t, xi)
}

≤
N∑

i=1

‖φi(t, xi)u
a
i ‖+

N∑

i=1

‖δbi (t, x)‖

−
N∑

i=1

(xbi )
τ

‖xbi‖
φi(t, xi)

(
gbi (t, xi)

)−1
‖uai ‖ρi(t, xi)sgn(xbi )

−

N∑

i=1

‖uai ‖ρi(t, xi)−

N∑

i=1

N∑

j=1

µji(t, xi)−

N∑

i=1

ζi(t, xi)

(29)

From Assumption 1,

N∑

i=1

‖δbi (t, T
−1x)‖ ≤

N∑

i=1

N∑

j=1

µij(t, xj) +
N∑

i=1

νi(t, x)

=
N∑

i=1

N∑

j=1

µji(t, xi) +
N∑

i=1

νi(t, x)

(30)

‖φi(t, xi)u
a
i ‖ ≤‖φi(t, xi)‖‖u

a
i ‖

≤‖uai ‖ρi(t, xi) (31)

and from Assumption 2,

(xbi )
τ

‖xbi‖
φi(t, xi)g

−1
i (t, xi)‖u

a
i ‖ρi(t, xi)sgn(xbi )

=
(xbi )

τ

‖xbi‖
‖uai ‖ρi(t, xi)

·

(
φi(t, xi)g

−1
i (t, xi) + (g−1

i (t, xi))
τφτi (t, xi)

)

2
· sgn(xbi ) ≥ 0 (32)

Substituting inequalities (30), (31) and (32) into (29),

N∑

i=1

στ
i σ̇i

‖σi‖
< −

N∑

i=1

ζi(t, xi) +

N∑

i=1

νi(t, x) < 0 (33)

Then the reachability condition (22) is satisfied. Hence, the

result follows. �

From sliding mode control theory, Theorems 1 and 2

together guarantee that the system (1)-(2) is stabilized by the

designed decentralised control (24) with uai and ubi defined

in (25) and (26).

V. NUMERICAL SIMULATION

Consider the following nonlinear interconnected systems

composed of the three subsystems described by

ẋa1 =
x11x12 − 4x11 cos(x13)

√

1 + x212 + x213
︸ ︷︷ ︸

fa

1
(t,xa

1
,xb

1
)

+ψa
1 (t, x) (34)

ẋb1 =

[
1.6x11x12

1.5x12

x2

13
+1

]

︸ ︷︷ ︸

fb

1
(t,x1)

+ψb
1(t, x)

+








[
1 x12
0 1

]

︸ ︷︷ ︸

g1(t,x1)

+φ1(t, x1)







u1 (35)

ẋa2 =
x21x22 − 6.25x21 cos(x22)

1 + 0.1x222
︸ ︷︷ ︸

fa

2
(t,xa

2
,xb

2
)

+ψa
2 (t, x) (36)

ẋb2 = 1.3x21x22
︸ ︷︷ ︸

fb

2
(t,xa

2
,xb

2
)

+ψb
2(t, x)

+




sin2(x22) + 1
︸ ︷︷ ︸

g2(t,x2)

+φ2(t, x2)




u2 (37)



ẋa3 =

[
x32 − 3.61x32 cos(x33)
−x31 + (x233 − 4)x32

]

︸ ︷︷ ︸

fa

3
(t,xa

3
,xb

3
)

+ψa
3 (t, x) (38)

ẋb3 =
1.6x32
x233 + 1
︸ ︷︷ ︸

fb

3
(t,xa

3
,xb

3
)

+ψb
3(t, x)

+




cos2(x31x33) + 0.8
︸ ︷︷ ︸

g3(t,x3)

+φ3(t, x3)




u3 (39)

where x11 := xa1 , col(x12, x13) := xb2, x21 := xa1 , x22 := xb2,

col(x31, x32) := xa1 and x33 := xb2. Assume the uncertainties

satisfy

‖φ1(t, x1)‖ ≤0.8|x12|+ 0.7 (40)

‖φ2(t, x2)‖ ≤0.3|x21x22| (41)

‖φ3(t, x3)‖ ≤0.5|x31 cos(x32)|+ 0.2 (42)

‖ψa
1 (t, x)‖ ≤ 0.4

|x11 sin(x11)|

sin(x12)2 + 1
︸ ︷︷ ︸

δa
11

(‖x1‖)

+ 0.3 |x21 + x22| cos
2(x21)

︸ ︷︷ ︸

δa
12

(‖x2‖)

+
0.2 |x31|

1 + x232
︸ ︷︷ ︸

δa
13

(‖x3‖)

(43)

‖ψa
2 (t, x)‖ ≤ 0.7‖x1‖

︸ ︷︷ ︸

δa
21

(‖x1‖)

+ |x21 cos(x21)|
︸ ︷︷ ︸

δa
22

(‖x2‖)

+ 0.1‖x3‖
︸ ︷︷ ︸

δa
23

(‖x3‖)

(44)

‖ψa
3 (t, x)‖ ≤ 1.2 |x11 sin(x11)|

︸ ︷︷ ︸

δa
31

(‖x1‖)

+0.8 |x21 + x22|
︸ ︷︷ ︸

δa
32

(‖x2‖)

+ |x31 cos(x32x33)|
︸ ︷︷ ︸

δa
33

(‖x3‖)

(45)

‖ψb
1(t, x)‖ ≤ 0.1‖x‖

︸ ︷︷ ︸

ν1(t,x)

(46)

‖ψb
2(t, x)‖ ≤ 0.4‖x1‖

︸ ︷︷ ︸

η21(t,x1)

+
0.2‖x2‖

‖x3‖+ 1
︸ ︷︷ ︸

ν2(t,x)

(47)

‖ψb
3(t, x)‖ ≤ 0.4‖x3‖

︸ ︷︷ ︸

η33(t,x3)

+0.1‖x1‖‖x2‖
︸ ︷︷ ︸

ν3(t,x)

(48)

Now define the sliding function as

σ(xi) = xbi i = 1, 2, 3

Then, from Lemma 1, when the sliding motion takes place,

‖ψa
1 (t, x11, x21, x31)‖ ≤ 0.4 |x11 sin(x11)|

︸ ︷︷ ︸

δa
11

(‖xa

1
‖)

+ 0.3 |x21| cos
2(x21)

︸ ︷︷ ︸

δa
12

(‖xa

2
‖)

+0.2 |x31|
︸ ︷︷ ︸

δa
13

(‖xa

3
‖)

(49)

‖ψa
2 (t, x11, x21, x31)‖ ≤ 0.7|x11|

︸ ︷︷ ︸

δa
21

(‖xa

1
‖)

+ |x21 cos(x21)|
︸ ︷︷ ︸

δa
22

(‖xa

2
‖)

+ 0.1|x31|
︸ ︷︷ ︸

δa
23

(‖xa

3
‖)

(50)

‖ψa
3 (t, x11, x21, x31)‖ ≤ 1.2 |x11 sin(x11)|

︸ ︷︷ ︸

δa
31

(‖xa

1
‖)

+0.8 |x21|
︸ ︷︷ ︸

δa
32

(‖xa

2
‖)

+ |x31|
︸︷︷︸

δa
33

(‖xa

3
‖)

(51)

Choosing the Lyapunov function candidate

Vi =
1

2
(xai )

Txai , i = 1, 2, 3 (52)

Then,

0.4‖xai ‖
2

︸ ︷︷ ︸

ςi1

≤ Vi(t, x
a
i ) ≤ 0.6 ‖xai ‖

2

︸ ︷︷ ︸

ςi2

Define ςi3(·) for i = 1, 2, 3 as

ς13(r) = 2r, ς23(r) = 2.5r, ς33(r) = 1.9r

and ςi4(·) as

ςi4(r) = r, i = 1, 2, 3

Then, through direct computation, it is straightforward to

verify that the conditions of Theorem 1 are satisfied. Thus

the designed sliding mode is asymptotically stable.

From (25) and (26), the controller ui for i = 1, 2, 3 are

well defined with ζ1 = 0.2‖x1‖, ζ2 = 0.4‖x2‖ and ζ3 =
0.1‖x3‖ which guarantee the condition (27) in Theorem 2 is

satisfied for xi ∈ R3, i = 1, 2, 3. Therefore system (34)-(39)

can be stabilised by the designed control.

The time response of the system states is shown in Fig.1,

and the time response of the control signal is shown in Fig.

2. The simulation results show that the proposed approach is

effective. It should be noted that in the simulation a boundary

layer is used to reduce the chattering of the controller.

Remark 2. To illustrate the results, the uncertainties in the

input distribution are chosen to satisfy (6) in Assumption 2,

e.g. the term φ1(t, x1) is described by the form

φ1(t, x1) =

[
α− β αx12
−βx12 c

]

(53)

where α, β and c are unknown parameters with 0 ≤ β <

α < 0.8 and |c| < 1.

VI. CONCLUSION

This paper has proposed a robust decentralised control de-

sign approach for a class of nonlinear systems with uncertain-

ties in the input distribution and in the interconnection. The

bounds on the uncertainties are assumed to be known func-

tions which have been used to enhance robustness against

the uncertainties. A sliding mode control is designed to

guarantee reachability. The developed results can be applied

to all interconnected systems which can be transfered to the

regular form in (1)-(2). A numerical example is given to show

how to use sliding mode techniques to stabilise a system with

uncertainties in the input distributions. Simulations have been

presented to demonstrate the effectiveness of this approach.
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