12 research outputs found

    The pregnane X receptor drives sexually dimorphic hepatic changes in lipid and xenobiotic metabolism in response to gut microbiota in mice.

    Get PDF
    The gut microbiota-intestine-liver relationship is emerging as an important factor in multiple hepatic pathologies, but the hepatic sensors and effectors of microbial signals are not well defined. By comparing publicly available liver transcriptomics data from conventional vs. germ-free mice, we identified pregnane X receptor (PXR, NR1I2) transcriptional activity as strongly affected by the absence of gut microbes. Microbiota depletion using antibiotics in Pxr <sup>+/+</sup> vs Pxr <sup>-/-</sup> C57BL/6J littermate mice followed by hepatic transcriptomics revealed that most microbiota-sensitive genes were PXR-dependent in the liver in males, but not in females. Pathway enrichment analysis suggested that microbiota-PXR interaction controlled fatty acid and xenobiotic metabolism. We confirmed that antibiotic treatment reduced liver triglyceride content and hampered xenobiotic metabolism in the liver from Pxr <sup>+/+</sup> but not Pxr <sup>-/-</sup> male mice. These findings identify PXR as a hepatic effector of microbiota-derived signals that regulate the host's sexually dimorphic lipid and xenobiotic metabolisms in the liver. Thus, our results reveal a potential new mechanism for unexpected drug-drug or food-drug interactions. Video abstract

    Liver PPARα is crucial for whole-body fatty acid homeostasis and is protective against NAFLD.

    Get PDF
    OBJECTIVE: Peroxisome proliferator-activated receptor α (PPARα) is a nuclear receptor expressed in tissues with high oxidative activity that plays a central role in metabolism. In this work, we investigated the effect of hepatocyte PPARα on non-alcoholic fatty liver disease (NAFLD). DESIGN: We constructed a novel hepatocyte-specific PPARα knockout (Pparα(hep-/-)) mouse model. Using this novel model, we performed transcriptomic analysis following fenofibrate treatment. Next, we investigated which physiological challenges impact on PPARα. Moreover, we measured the contribution of hepatocytic PPARα activity to whole-body metabolism and fibroblast growth factor 21 production during fasting. Finally, we determined the influence of hepatocyte-specific PPARα deficiency in different models of steatosis and during ageing. RESULTS: Hepatocyte PPARα deletion impaired fatty acid catabolism, resulting in hepatic lipid accumulation during fasting and in two preclinical models of steatosis. Fasting mice showed acute PPARα-dependent hepatocyte activity during early night, with correspondingly increased circulating free fatty acids, which could be further stimulated by adipocyte lipolysis. Fasting led to mild hypoglycaemia and hypothermia in Pparα(hep-/-) mice when compared with Pparα(-/-) mice implying a role of PPARα activity in non-hepatic tissues. In agreement with this observation, Pparα(-/-) mice became overweight during ageing while Pparα(hep-/-) remained lean. However, like Pparα(-/-) mice, Pparα(hep-/-) fed a standard diet developed hepatic steatosis in ageing. CONCLUSIONS: Altogether, these findings underscore the potential of hepatocyte PPARα as a drug target for NAFLD

    Genome-Scale Analysis of Mycoplasma agalactiae Loci Involved in Interaction with Host Cells

    Get PDF
    Mycoplasma agalactiae is an important pathogen of small ruminants, in which it causes contagious agalactia. It belongs to a large group of “minimal bacteria” with a small genome and reduced metabolic capacities that are dependent on their host for nutrients. Mycoplasma survival thus relies on intimate contact with host cells, but little is known about the factors involved in these interactions or in the more general infectious process. To address this issue, an assay based on goat epithelial and fibroblastic cells was used to screen a M. agalactiae knockout mutant library. Mutants with reduced growth capacities in cell culture were selected and 62 genomic loci were identified as contributing to this phenotype. As expected for minimal bacteria, “transport and metabolism” was the functional category most commonly implicated in this phenotype, but 50% of the selected mutants were disrupted in coding sequences (CDSs) with unknown functions, with surface lipoproteins being most commonly represented in this category. Since mycoplasmas lack a cell wall, lipoproteins are likely to be important in interactions with the host. A few intergenic regions were also identified that may act as regulatory sequences under co-culture conditions. Interestingly, some mutants mapped to gene clusters that are highly conserved across mycoplasma species but located in different positions. One of these clusters was found in a transcriptionally active region of the M. agalactiae chromosome, downstream of a cryptic promoter. A possible scenario for the evolution of these loci is discussed. Finally, several CDSs identified here are conserved in other important pathogenic mycoplasmas, and some were involved in horizontal gene transfer with phylogenetically distant species. These results provide a basis for further deciphering functions mediating mycoplasma-host interactions

    Metabolic effects of a chronic dietary exposure to a low-dose oesticide cocktail in mice: Sexual dimorphism and role of the constitutive androstane receptor

    No full text
    International audienceEpidemiological evidence suggests a link between pesticide exposure and the development of metabolic diseases. However, most experimental studies have evaluated the metabolic effects of pesticides using individual molecules, often at nonrelevant doses or in combination with other risk factors such as high-fat diets. We aimed to evaluate, in mice, the metabolic consequences of chronic dietary exposure to a pesticide mixture at nontoxic doses, relevant to consumers' risk assessment. A mixture of six pesticides commonly used in France, i.e., boscalid, captan, chlorpyrifos, thiofanate, thiacloprid, and ziram, was incorporated in a standard chow at doses exposing mice to the tolerable daily intake (TDI) of each pesticide. Wild-type (WT) and constitutive androstane receptor-deficient (CAR-/-) male and female mice were exposed for 52 wk. We assessed metabolic parameters [body weight (BW), food and water consumption, glucose tolerance, urinary metabolome] throughout the experiment. At the end of the experiment, we evaluated liver metabolism (histology, transcriptomics, metabolomics, lipidomics) and pesticide detoxification using liquid chromatography-mass spectrometry (LC-MS). Compared to those fed control chow, WT male mice fed pesticide chow had greater BW gain and more adiposity. Moreover, these WT males fed pesticide chow exhibited characteristics of hepatic steatosis and glucose intolerance, which were not observed in those fed control chow. WT exposed female mice exhibited fasting hyperglycemia, higher reduced glutathione (GSH):oxidized glutathione (GSSG) liver ratio and perturbations of gut microbiota-related urinary metabolites compared to WT mice fed control chow. When we performed these experiments on CAR-/- mice, pesticide-exposed CAR-/- males did not exhibit BW gain or changes in glucose metabolism compared to the CAR-/- males fed control chow. Moreover, CAR-/- females fed pesticide chow exhibited pesticide toxicity with higher BWs and mortality rate compared to the CAR-/- females fed control chow. To our knowledge, we are the first to demonstrate a sexually dimorphic obesogenic and diabetogenic effect of chronic dietary exposure to a common mixture of pesticides at TDI levels, and to provide evidence for a partial role for CAR in an in vivo mouse model. This raises questions about the relevance of TDI for individual pesticides when present in a mixture

    Perinatal exposure to a dietary pesticide cocktail does not increase susceptibility to high-fat diet-induced metabolic perturbations at adulthood but modifies urinary and fecal metabolic fingerprints in C57Bl6/J mice

    No full text
    International audienceBackground: We recently demonstrated that chronic dietary exposure to a mixture of pesticides at low-doses induced sexually dimorphic obesogenic and diabetogenic effects in adult mice. Perinatal pesticide exposure may also be a factor in metabolic disease etiology. However, the long-term consequences of perinatal pesticide exposure remain controversial and largely unexplored.Objectives: Here we assessed how perinatal exposure to the same low-dose pesticide cocktail impacted metabolic homeostasis in adult mice.Methods: Six pesticides (boscalid, captan, chlopyrifos, thiachloprid, thiophanate, and ziram) were incorporated in food pellets. During the gestation and lactation periods, female (F0) mice were fed either a pesticide-free or a pesticide-enriched diet at doses exposing them to the tolerable daily intake (TDI) level for each compound, using a 1:1 body weight scaling from humans to mice. All male and female offsprings (F1) were then fed the pesticide-free diet until 18 weeks of age, followed by challenge with a pesticide-free high-fat diet (HFD) for 6 weeks. Metabolic parameters, including body weight, food and water consumption, glucose tolerance, and urinary and fecal metabolomes, were assessed over time. At the end of the experiment, we evaluated energetic metabolism and microbiota activity using biochemical assays, gene expression profiling, and 1H NMR-based metabolomics in the liver, urine, and feces.Results: Perinatal pesticide exposure did not affect body weight or energy homeostasis in 6- and 14-week-old mice. As expected, HFD increased body weight and induced metabolic disorders as compared to a low-fat diet. However, HFD-induced metabolic perturbations were similar between mice with and without perinatal pesticide exposure. Interestingly, perinatal pesticide exposure induced time-specific and sex-specific alterations in the urinary and fecal metabolomes of adult mice, suggesting long-lasting changes in gut microbiota.Conclusions: Perinatal pesticide exposure induced sustained sexually dimorphic perturbations of the urinary and fecal metabolic fingerprints, but did not significantly influence the development of HFD-induced metabolic diseases

    A high efficient and consistent method for harvesting large volumes of high-titre lentiviral vectors

    No full text
    Lentiviral vectors pseudotyped with vesicular stomatitis virus glycoprotein (VSV-G) are emerging as the vectors of choice for in vitro and in vivo gene therapy studies. However, the current method for harvesting lentivectors relies upon ultracentrifugation at 50 000 g for 2 h. At this ultra-high speed, rotors currently in use generally have small volume capacity. Therefore, preparations of large volumes of high-titre vectors are time-consuming and laborious to perform. In the present study, viral vector supernatant harvests from vector-producing cells (VPCs) were pre-treated with various amounts of poly-L-lysine (PLL) and concentrated by low speed centrifugation. Optimal conditions were established when 0.005% of PLL (w/v) was added to vector supernatant harvests, followed by incubation for 30 min and centrifugation at 10 000 g for 2 h at 4 degreesC. Direct comparison with ultracentrifugation demonstrated that the new method consistently produced larger volumes (6 ml) of high-titre viral vector at 1 x 10(8) transduction unit (TU)/ml (from about 3000 ml of supernatant) in one round of concentration. Electron microscopic analysis showed that PLL/viral vector formed complexes, which probably facilitated easy precipitation at low-speed concentration (10 000 g), a speed which does not usually precipitate viral particles efficiently. Transfection of several cell lines in vitro and transduction in vivo in the liver with the lentivector/PLL complexes demonstrated efficient gene transfer without any significant signs of toxicity. These results suggest that the new method provides a convenient means for harvesting large volumes of high-titre lentivectors, facilitate gene therapy experiments in large animal or human gene therapy trials, in which large amounts of lentiviral vectors are a prerequisite
    corecore