28 research outputs found

    Ruppeiner Geometry of RN Black Holes: Flat or Curved?

    Full text link
    In some recent studies \cite{aman1, aman2, aman3}, Aman {\it et al.} used the Ruppeiner scalar as a measure of underlying interactions of Reissner-Nordstr\"{o}m black holes, indicating that it is a non-interacting statistical system for which classical thermodynamics could be used at any scale. Here, we show that if we use the complete set of thermodynamic variables, a non-flat state space will be produced. Furthermore, the Ruppeiner curvature diverges at extremal limits, as it would for other types of black holes.Comment: 9 page

    Information measures based on Tsallis' entropy and geometric considerations for thermodynamic systems

    Full text link
    An analysis of the thermodynamic behavior of quantum systems can be performed from a geometrical perspective investigating the structure of the state space. We have developed such an analysis for nonextensive thermostatistical frameworks, making use of the q-divergence derived from Tsallis' entropy. Generalized expressions for operator variance and covariance are considered, in terms of which the fundamental tensor is given.Comment: contribution to 3rd NEXT-SigmaPhi International Conference (August 2005, Kolymbari, Greece

    The prevalence of Aphanomyces astaci in invasive signal crayfish from the UK and implications for native crayfish conservation

    Get PDF
    The crayfish plague agent, Aphanomyces astaci, has spread throughout Europe, causing a significant decline in native European crayfish. The introduction and dissemination of this pathogen is attributed to the spread of invasive North American crayfish, which can act as carriers for A. astaci. As native European crayfish often succumb to infection with A. astaci, determining the prevalence of this pathogen in non-native crayfish is vital to prioritize native crayfish populations for managed translocation. In the current study, 23 populations of invasive signal crayfish (Pacifastacus leniusculus) from the UK were tested for A. astaci presence using quantitative PCR. Altogether, 13 out of 23 (56·5%) populations were found to be infected, and pathogen prevalence within infected sites varied from 3 to 80%. Microsatellite pathogen genotyping revealed that at least one UK signal crayfish population was infected with the A. astaci genotype group B, known to include virulent strains. Based on recent crayfish distribution records and the average rate of signal crayfish population dispersal, we identified one native white-clawed crayfish (Austropotamobius pallipes) population predicted to come into contact with infected signal crayfish within 5 years. This population should be considered as a priority for translocation

    Quantifying intra-tumoral genetic heterogeneity of glioblastoma toward precision medicine using MRI and a data-inclusive machine learning algorithm

    Full text link
    Glioblastoma (GBM) is one of the most aggressive and lethal human cancers. Intra-tumoral genetic heterogeneity poses a significant challenge for treatment. Biopsy is invasive, which motivates the development of non-invasive, MRI-based machine learning (ML) models to quantify intra-tumoral genetic heterogeneity for each patient. This capability holds great promise for enabling better therapeutic selection to improve patient outcomes. We proposed a novel Weakly Supervised Ordinal Support Vector Machine (WSO-SVM) to predict regional genetic alteration status within each GBM tumor using MRI. WSO-SVM was applied to a unique dataset of 318 image-localized biopsies with spatially matched multiparametric MRI from 74 GBM patients. The model was trained to predict the regional genetic alteration of three GBM driver genes (EGFR, PDGFRA, and PTEN) based on features extracted from the corresponding region of five MRI contrast images. For comparison, a variety of existing ML algorithms were also applied. The classification accuracy of each gene was compared between the different algorithms. The SHapley Additive exPlanations (SHAP) method was further applied to compute contribution scores of different contrast images. Finally, the trained WSO-SVM was used to generate prediction maps within the tumoral area of each patient to help visualize the intra-tumoral genetic heterogeneity. This study demonstrated the feasibility of using MRI and WSO-SVM to enable non-invasive prediction of intra-tumoral regional genetic alteration for each GBM patient, which can inform future adaptive therapies for individualized oncology.Comment: 36 pages, 8 figures, 3 table

    First record of an introduced population of the southern lineage of white-clawed crayfish (

    No full text
    Elucidating the status of populations of endangered species of unclear origin may have important implications for conservation management. In September 2013, a population of white-clawed crayfish was discovered outside of the native range in a small artificial lake in the River Neckar catchment in southwestern Germany. White-clawed crayfish comprise two distinct lineages of yet unresolved taxonomic status, of which only the western lineage (Austropotamobius pallipes s. str.) is native to Germany. To clarify the taxonomic identity and origin of the newly discovered population, we evaluated diagnostic morphological characters and sequences of two mitochondrial genes (for 16S rRNA and cytochrome c oxidase subunit I) from two crayfish specimens. Both analyses concordantly assigned the crayfish to the southern lineage (A. ‘italicus’), with the closest matching haplotypes originating from northwestern Italy, southeastern Switzerland, and Lake Plansee in Austria, where an abundant introduced population of this lineage is present. The artificial lake in Germany was reportedly stocked with freshwater mussels from this Austrian lake. It thus appears likely that A. ‘italicus’ was introduced intentionally or accidentally during the process. Austropotamobius ‘italicus’ does not naturally occur north of the Alps and thus represents a non-native taxon for Germany, a fact to be considered in its management

    Influence of Plastic Deformation Process on the Structure and Properties of Alloy WE43

    No full text
    The paper describes the results of structure and properties tests of flat bars made of alloy WE43 obtained in the process of extrusion with the use of KOBO method. An analysis of structure changes was conducted both in initial state and after plastic deformation. A quantitative analysis of the material was also conducted with the use of METILO program. The paper also presents results of mechanical tests marked in the uniaxial tensile testing in room temperature and in elevated temperature for achieved flat bars. Fractographic tests were conducted after tensile test in order to determine the mechanism of cracking

    A unified classification of alien species based on the magnitude of their environmental impacts

    Get PDF
    Species moved by human activities beyond the limits of their native geographic ranges into areas in which they do not naturally occur (termed aliens) can cause a broad range of significant changes to recipient ecosystems; however, their impacts vary greatly across species and the ecosystems into which they are introduced. There is therefore a critical need for a standardised method to evaluate, compare, and eventually predict the magnitudes of these different impacts. Here, we propose a straightforward system for classifying alien species according to the magnitude of their environmental impacts, based on the mechanisms of impact used to code species in the International Union for Conservation of Nature (IUCN) Global Invasive Species Database, which are presented here for the first time. The classification system uses five semi-quantitative scenarios describing impacts under each mechanism to assign species to different levels of impact-ranging from Minimal to Massive-with assignment corresponding to the highest level of deleterious impact associated with any of the mechanisms. The scheme also includes categories for species that are Not Evaluated, have No Alien Population, or are Data Deficient, and a method for assigning uncertainty to all the classifications. We show how this classification system is applicable at different levels of ecological complexity and different spatial and temporal scales, and embraces existing impact metrics. In fact, the scheme is analogous to the already widely adopted and accepted Red List approach to categorising extinction risk, and so could conceivably be readily integrated with existing practices and policies in many regions. © 2014 Blackburn et al
    corecore