12 research outputs found

    Data from: High-throughput screening of inorganic compounds for dielectric and optical properties to enable the discovery of novel materials

    No full text
    Dielectrics are an important class of materials that are ubiquitous in modern electronic applications. Even though their properties are important for the performance of devices, the number of compounds with known dielectric constant is on the order of a few hundred. Here, we use Density Functional Perturbation Theory as a way to screen for the dielectric constant and refractive index of materials in a fast and computationally efficient way. Our results form the largest database to date, containing the full dielectric tensor for 1,056 compounds. Details regarding the computational methodology and technical validation are presented along with the format of our publicly available data. In addition, we integrate our dataset with the Materials Project allowing users easy access to material properties. Finally, we explain how our dataset and calculation methodology can be used in the search for novel dielectric compounds

    High-throughput screening of inorganic compounds for the discovery of novel dielectric and optical materials.

    No full text
    Dielectrics are an important class of materials that are ubiquitous in modern electronic applications. Even though their properties are important for the performance of devices, the number of compounds with known dielectric constant is on the order of a few hundred. Here, we use Density Functional Perturbation Theory as a way to screen for the dielectric constant and refractive index of materials in a fast and computationally efficient way. Our results constitute the largest dielectric tensors database to date, containing 1,056 compounds. Details regarding the computational methodology and technical validation are presented along with the format of our publicly available data. In addition, we integrate our dataset with the Materials Project allowing users easy access to material properties. Finally, we explain how our dataset and calculation methodology can be used in the search for novel dielectric compounds

    Dielectric tensors and refractive indices

    No full text
    The data provided are in the form of a human-readable JSON file. The file contains the dielectric tensors and refractive index values for 1,056 inorganic compounds, calculated using Density Functional Perturbation Theory
    corecore