12 research outputs found
Recommended from our members
propnet: A Knowledge Graph for Materials Science
Discovering the ideal material for a new application involves determining its numerous properties, such as electronic, mechanical, or thermodynamic, to match those of its desired application. The rise of high-throughput computation has meant that large databases of material properties are now accessible to scientists. However, these databases contain far more information than might appear at first glance, since many relationships exist in the materials science literature to derive, or at least approximate, additional properties. propnet is a new computational framework designed to help scientists to automatically calculate additional information from their datasets. It does this by constructing a network graph of relationships between different materials properties and traversing this graph. Initially, propnet contains a catalog of over 100 property relationships but the hope is for this to expand significantly in the future, and contributions from the community are welcomed
Data from: High-throughput screening of inorganic compounds for dielectric and optical properties to enable the discovery of novel materials
Dielectrics are an important class of materials that are ubiquitous in modern electronic applications. Even though their properties are important for the performance of devices, the number of compounds with known dielectric constant is on the order of a few hundred. Here, we use Density Functional Perturbation Theory as a way to screen for the dielectric constant and refractive index of materials in a fast and computationally efficient way. Our results form the largest database to date, containing the full dielectric tensor for 1,056 compounds. Details regarding the computational methodology and technical validation are presented along with the format of our publicly available data. In addition, we integrate our dataset with the Materials Project allowing users easy access to material properties. Finally, we explain how our dataset and calculation methodology can be used in the search for novel dielectric compounds
High-throughput screening of inorganic compounds for the discovery of novel dielectric and optical materials.
Dielectrics are an important class of materials that are ubiquitous in modern electronic applications. Even though their properties are important for the performance of devices, the number of compounds with known dielectric constant is on the order of a few hundred. Here, we use Density Functional Perturbation Theory as a way to screen for the dielectric constant and refractive index of materials in a fast and computationally efficient way. Our results constitute the largest dielectric tensors database to date, containing 1,056 compounds. Details regarding the computational methodology and technical validation are presented along with the format of our publicly available data. In addition, we integrate our dataset with the Materials Project allowing users easy access to material properties. Finally, we explain how our dataset and calculation methodology can be used in the search for novel dielectric compounds
Dielectric tensors and refractive indices
The data provided are in the form of a human-readable JSON file. The file contains the dielectric tensors and refractive index values for 1,056 inorganic compounds, calculated using Density Functional Perturbation Theory