4,643 research outputs found

    Butterfly pitch-angle distribution of relativistic electrons in the outer radiation belt: Evidence of nonadiabatic scattering

    Get PDF
    In this paper we investigate the scattering of relativistic electrons in the nightside outer radiation belt (around the geostationary orbit). We consider the particular case of low geomagnetic activity (|Dst|\u3c20 nT), quiet conditions in the solar wind, and absence of whistler wave emissions. For such conditions we find several events of Van Allen probe observations of butterfly pitch angle distributions of relativistic electrons (energies about 1–3 MeV). Many previous publications have described such pitch angle distributions over a wide energy range as due to the combined effect of outward radial diffusion and magnetopause shadowing. In this paper we discuss another mechanism that produces butterfly distributions over a limited range of electron energies. We suggest that such distributions can be shaped due to relativistic electron scattering in the equatorial plane of magnetic field lines that are locally deformed by currents of hot ions injected into the inner magnetosphere. Analytical estimates, test particle simulations, and observations of the AE index support this scenario. We conclude that even in the rather quiet magnetosphere, small scale (magnetic local time (MLT)-localized) injection of hot ions from the magnetotail can likely influence the relativistic electron scattering. Thus, observations of butterfly pitch angle distributions can serve as an indicator of magnetic field deformations in the nightside inner magnetosphere. We briefly discuss possible theoretical approaches and problems for modeling such nonadiabatic electron scattering

    Recent Plasma Observations Related to Magnetic Merging and the Low-Latitude Boundary Layer. Case Study by Polar, March 18, 2006

    Get PDF
    We have begun an investigation of the nature of the low-latitude boundary layer in the mid-altitude cusp region using data from the Polar spacecraft. Magnetosheath-like plasma is frequently observed deep (in terms of distance from the magnetopause and in invariant latitude) in the magnetosphere. One such case, taken during a long period of northward interplanetary magnetic field (IMP) on March 18, 2006, shows injected magnetosheath ions within the magnetosphere with velocity distributions resulting from two separate merging sites along the same field lines. Cold ionospheric ions were also observed counterstreaming along the field lines, evidence that these field lines were closed. Our results support the idea of double reconnection under northward IMP on the same group of field lines can provide a source for the LLBL. However, the flow direction of the accelerated magnetosheath ions antiparallel to the local magnetic field and given location of the spacecraft suggest that these two injection sites are located northward of the spacecraft position. Observed convection velocities of the magnetic field lines are inconsistent with those expected for double post-cusp reconnection in both hemispheres. These observations favor a scenario in which a group of newly closed field lines was created by a combination of high shear merging at high latitudes in the northern hemisphere and low shear merging at lower latitudes at the dayside magnetopause

    Spacecraft charging and ion wake formation in the near-Sun environment

    Full text link
    A three-dimensional (3-D), self-consistent code is employed to solve for the static potential structure surrounding a spacecraft in a high photoelectron environment. The numerical solutions show that, under certain conditions, a spacecraft can take on a negative potential in spite of strong photoelectron currents. The negative potential is due to an electrostatic barrier near the surface of the spacecraft that can reflect a large fraction of the photoelectron flux back to the spacecraft. This electrostatic barrier forms if (1) the photoelectron density at the surface of the spacecraft greatly exceeds the ambient plasma density, (2) the spacecraft size is significantly larger than local Debye length of the photoelectrons, and (3) the thermal electron energy is much larger than the characteristic energy of the escaping photoelectrons. All of these conditions are present near the Sun. The numerical solutions also show that the spacecraft's negative potential can be amplified by an ion wake. The negative potential of the ion wake prevents secondary electrons from escaping the part of spacecraft in contact with the wake. These findings may be important for future spacecraft missions that go nearer to the Sun, such as Solar Orbiter and Solar Probe Plus.Comment: 25 pages, 7 figures, accepted for publication in Physics of Plasma

    Change in Knowledge of and Adherence to the Low-Sodium Diet in Patients with Heart Failure after Nutrition Education by a Registered Dietitian Nutritionist

    Get PDF
    Nutrition intervention by a registered dietitian nutritionist (RDN) is effective in improving patients’ knowledge or adherence to low-sodium diet (LSD, <2,000 mg/d); however, changes in knowledge and adherence in heart failure (HF) patients.   have not been simultaneously assessed in the same study Therefore, the objective of the present study was to identify both HF patient sodium knowledge and adherence to the LSD before and after an education session with an RDN. A quasi-experimental study with a one-group, pre-test post-test design was conducted. An RDN conducted a 15-minute individualized nutrition education regarding the LSD at the initial visit. Sodium knowledge was measured by the Parkland Sodium Knowledge Test, and sodium intake was measured by a 29-item sodium-specific food frequency questionnaire created by NutritionQuest© at both the initial and follow-up visits. A total of 71 patients were educated on the LSD and assessed for changes in sodium knowledge and intake at their next visit. Most patients were middle aged, obese, male, and non-Hispanic Black with an education level of greater than 12 years. At the initial visit, the majority of patients were considered knowledgeable but not accordant to the LSD. Following RDN education, sodium knowledge significantly improved and sodium intake significantly decreased. RDNs should be included as members of the HF multidisciplinary team to increase sodium knowledge and reduce sodium intake through individualized nutrition education

    Phonons in random alloys: the itinerant coherent-potential approximation

    Full text link
    We present the itinerant coherent-potential approximation(ICPA), an analytic, translationally invariant and tractable form of augmented-space-based, multiple-scattering theory in a single-site approximation for harmonic phonons in realistic random binary alloys with mass and force-constant disorder. We provide expressions for quantities needed for comparison with experimental structure factors such as partial and average spectral functions and derive the sum rules associated with them. Numerical results are presented for Ni_{55} Pd_{45} and Ni_{50} Pt_{50} alloys which serve as test cases, the former for weak force-constant disorder and the latter for strong. We present results on dispersion curves and disorder-induced widths. Direct comparisons with the single-site coherent potential approximation(CPA) and experiment are made which provide insight into the physics of force-constant changes in random alloys. The CPA accounts well for the weak force-constant disorder case but fails for strong force-constant disorder where the ICPA succeeds.Comment: 19 pages, 12 eps figures, uses RevTex

    Periodic traveling compression regions during quiet geomagnetic conditions and their association with ground Pi2

    Get PDF
    Recently, Keiling et al. (2006) showed that periodic (~90 s) traveling compression regions (TCRs) during a substorm had properties of Pi2 pulsations, prompting them to call this type of periodic TCRs "lobe Pi2". It was further shown that time-delayed ground Pi2 had the same period as the lobe Pi2 located at 16 <I>R<sub>E</sub></I>, and it was concluded that both were remotely driven by periodic, pulsed reconnection in the magnetotail. In the study reported here, we give further evidence for this association by reporting additional periodic TCR events (lobe Pi2s) at 18 <I>R<sub>E</sub></I> all of which occurred in succession during a geomagnetically very quiet, non-substorm period. Each quiet-time periodic TCR event occurred during an interval of small <I>H</I>-bay-like ground disturbance (<40 nT). Such disturbances have previously been identified as poleward boundary intensifications (PBIs). The small <I>H</I> bays were superposed by Pi2s. These ground Pi2s are compared to the TCRs in the tail lobe (Cluster) and both magnetic pulsations and flow variations at 9 <I>R<sub>E</sub></I> inside the plasma sheet (Geotail). The main results of this study are: (1) Further evidence is given that periodic TCRs in the tail lobe at distances of 18 <I>R<sub>E</sub></I> and ground Pi2 are related phenomena. In particular, it is shown that both had the same periodicity and occurred simultaneously (allowing for propagation time delays) strongly suggesting that both had the same periodic source. Since the TCRs were propagating Earthward, this source was located in the outer magnetosphere beyond 18 <I>R<sub>E</sub></I>. (2) The connection of periodic TCRs and ground Pi2 also exists during very quiet geomagnetic conditions with PBIs present in addition to the previous result (Keiling et al., 2006) which showed this connection during substorms. (3) Combining (1) and (2), we conclude that the frequency of PBI-associated Pi2 is controlled in the outer magnetosphere as opposed to the inner magnetosphere. We propose that this mechanism is pulsed reconnection based on previous results which combined modeled results and observations of substorm-related periodic TCRs and ground Pi2. (4) We show that TCRs with small compression ratios (ΔB/B<1%) can be useful in the study of magnetotail dynamics and we argue that other compressional fluctuations with ΔB/B<1% (without having all of the characteristic signatures of TCRs) seen in the tail lobe could possibly be related to the same mechanism that generates TCR with ΔB/B>1% (which are more commonly studied). (5) Finally, it is noted that both quiet time and substorm-related periodic TCRs had remarkably similar periods in spite of the drastically different geomagnetic conditions prevailing during the events which poses the important question of what causes this periodicity under these different conditions

    High-altitude Polar Cap Electric Field Responses to Southward Turnings of the Interplanetary Magnetic Field

    Get PDF
    Interplanetary electric field coupling with the magnetosphere has been analyzed predominantly using data from the Wind magnetometer and the Polar electric field instrument. The coupling was investigated using the Polar Electric Field Instrument (EFI) to measure the electric field in the northern polar cap immediately following sharp southward turnings of the IMF as observed by Wind. Southward turnings were chosen which exhibited a sudden change of the IMF north-south component from BZ \u3e 0 to BZ \u3c 0 (GSM coordinates) after an hour or more of relatively stable conditions, and for which Polar was in the northern polar cap. These BZ changes correspond to EY changes in the interplanetary electric field. For each of the 30 identified events, a time was estimated for the arrival of the IMF change at the magnetopause using the solar wind speed observed by the Wind Solar Wind Experiment (SWE), and Polar electric field data were examined to identify responses. For many of the selected events (about one third), abrupt changes of state in the magnetospheric electric field were evident with timing that matched the expected solar wind arrival time at Earth. For events for which additional data were available, we conducted in-depth examination of the individual events using IMP 8, Geotail, and GOES 9. In one such event, GOES 9 data showed a substorm growth phase and onset which also corresponded to features in the solar wind observed by Wind, Geotail, and IMP 8. In addition to the individual event studies, a superposed epoch analysis of all available events revealed a consistent rise in the mean polar cap electric field about 15 min following sharp IMF southward turnings

    Lateral specialization in unilateral spatial neglect : a cognitive robotics model

    Get PDF
    In this paper, we present the experimental results of an embodied cognitive robotic approach for modelling the human cognitive deficit known as unilateral spatial neglect (USN). To this end, we introduce an artificial neural network architecture designed and trained to control the spatial attentional focus of the iCub robotic platform. Like the human brain, the architecture is divided into two hemispheres and it incorporates bio-inspired plasticity mechanisms, which allow the development of the phenomenon of the specialization of the right hemisphere for spatial attention. In this study, we validate the model by replicating a previous experiment with human patients affected by the USN and numerical results show that the robot mimics the behaviours previously exhibited by humans. We also simulated recovery after the damage to compare the performance of each of the two hemispheres as additional validation of the model. Finally, we highlight some possible advantages of modelling cognitive dysfunctions of the human brain by means of robotic platforms, which can supplement traditional approaches for studying spatial impairments in humans
    • …
    corecore