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of nonadiabatic scattering
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1Space Science Laboratory, University of California, Berkeley, California, USA, 2Space Research Institute, RAS, Moscow,
Russia, 3Astronomy and Space Physics Department, Physical Faculty, Taras Shevchenko National University of Kiev, Kiev,
Ukraine, 4Department of Physics, University of New Hampshire, Durham, New Hampshire, USA

Abstract In this paper we investigate the scattering of relativistic electrons in the nightside outer
radiation belt (around the geostationary orbit). We consider the particular case of low geomagnetic activity
(|Dst|<20 nT), quiet conditions in the solar wind, and absence of whistler wave emissions. For such
conditions we find several events of Van Allen probe observations of butterfly pitch angle distributions
of relativistic electrons (energies about 1–3 MeV). Many previous publications have described such pitch
angle distributions over a wide energy range as due to the combined effect of outward radial diffusion
and magnetopause shadowing. In this paper we discuss another mechanism that produces butterfly
distributions over a limited range of electron energies. We suggest that such distributions can be shaped
due to relativistic electron scattering in the equatorial plane of magnetic field lines that are locally
deformed by currents of hot ions injected into the inner magnetosphere. Analytical estimates, test particle
simulations, and observations of the AE index support this scenario. We conclude that even in the rather
quiet magnetosphere, small scale (magnetic local time (MLT)-localized) injection of hot ions from the
magnetotail can likely influence the relativistic electron scattering. Thus, observations of butterfly pitch
angle distributions can serve as an indicator of magnetic field deformations in the nightside inner
magnetosphere. We briefly discuss possible theoretical approaches and problems for modeling such
nonadiabatic electron scattering.

1. Introduction

The motion of charged particles in the Earth’s inner magnetosphere is controlled by the strong dipole
magnetic field. Such motions are called adiabatic due to the conservation of the three adiabatic invariants
corresponding to particle gyrorotation (the first adiabatic invariant—magnetic moment), bounce oscil-
lations (the second adiabatic invariant), and azimuthal drift around the planet (third adiabatic invariant)
[see, e.g., Roederer, 1970; Shabansky, 1971; Ukhorskiy and Sitnov, 2013, and references therein]. The nonconser-
vation of these invariants has been the subject of detailed investigations throughout the history of radiation
belt physics.

There are two main mechanisms responsible for nonadiabatic effects: various peculiarities of the magnetic
field configuration and wave-particle resonance interactions. In the first case we deal with the violation of the
adiabatic approximation when the scale size of the magnetic field inhomogeneity becomes comparable to
the spatial scale (say Larmor radius) of charged particle motion. The second case produces violation of the
adiabatic approximation due to fast (comparable with the time scale of charged particle gyrorotation) varia-
tions of wave electromagnetic fields. Thus, shaping of charged particle pitch angle distributions is controlled
by transport (and/or injection) processes in a deformed dipole magnetic field (these mechanisms seem to be
more important for ions, see Chen et al. [1998], Anderson and Takahashi [2000], and Ebihara et al. [2011]) and by
the wave-particle resonant interactions (seem to be more important for electrons, see, e.g., Åsnes et al. [2005]).

One of the beautiful manifestations of nonadiabatic effects of charged particle motion in the inner magneto-
sphere is formation of the so-called butterfly pitch angle distributions. The first comprehensive survey of such
electron pitch angle distributions by OGO5 in the inner magnetosphere and the near-Earth magnetotail was
performed by West et al. [1973]. In contrast to “standard” pitch angle distributions with an empty loss cone
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region (small pitch angles) and maximal fluxes at equatorial pitch angles [e.g., Bogott and Mozer, 1971; West,
1979; Gannon et al., 2007], the butterfly distribution corresponds to a minimum of fluxes both in the loss cone
and near 90∘ pitch angles. From the earliest observations, the formation of the electron butterfly pitch angle
distribution was explained by a combination of the effects of localized injection of charged particles from the
magnetotail region and azimuthal energy-dependent drifts [Luhmann and Vampola, 1977]. Observations from
the ATS-6 spacecraft showed that the decrease of the equatorial magnetic field amplitude on the nightside
can be accompanied by formation of electron pitch angle distributions having minima at large pitch angles
[Kaye et al., 1978]. Thus, butterfly distributions are associated with the deformed nightside magnetic field
configuration. The observational evidence of the formation of butterfly distributions (both for ions and
electrons) due to splitting of drift shells in the compressed inner magnetosphere was given by Wilken et al.
[1986]. Further, the survey of ISEE-1 observations supported the idea of the formation of butterfly pitch angle
distributions over a wide energy range (20 keV–2 MeV) due to splitting of drift shells and magnetopause
shadowing [Fritz et al., 2003]. Similar results were obtained using the Polar observations of electron pitch
angle distributions [Klida and Fritz, 2009, 2013]. However, Gannon et al. [2007] demonstrated the dominance of
electron butterfly distributions in the nightside and higher L shells for energies larger than 500 keV. Thus,
electron butterfly distributions can be separated into (1) events when the minimum of equatorial fluxes are
observed over a wide energy range (for these cases, the butterfly distributions are also often observed for
ions) and (2) events when only high-energy equatorial electrons are absent. In the first case, charged particle
losses due to magnetopause shadowing in a compressed magnetosphere seem to be responsible for the for-
mation of butterfly distributions (see discussion of the significant role of inner magnetosphere compression
for electron losses in Kim et al. [2008], Ohtani et al. [2009], and Turner et al. [2012]). The second case seems to
be more relevant to nightside charged particle nonadiabatic scattering [Shibahara et al., 2010] or adiabatic
evolution [Ebihara et al., 2008; Su et al., 2010] in the deformed (stretched) magnetic field configuration. The
efficiency of nonadiabatic scattering for formation of butterfly distributions was demonstrated for ions, while
for electrons, such a mechanism may work only for very high energies (> 1 MeV).

Strong currents of injected hot ions can significantly deform the magnetic field configuration in the night-
side inner magnetosphere [e.g., Daglis et al., 1999]. These currents decrease the equatorial magnetic field
and increase the tangential field component. Thus, magnetotail-like configurations with stretched field lines
can emerge (see results of empirical models [Tsyganenko et al., 2003; Sitnov et al., 2008; Kubyshkina et al.,
2009]). Violation of adiabaticity of charged particle motions in such a magnetic field configuration has been
thoroughly investigated both for energetic ions and relativistic electrons [e.g., Anderson et al., 1997; Delcourt
and Belmont, 1998, and references therein]. The main effect of this motion is due to nonadiabatic jumps of
the first adiabatic invariant near the equatorial plane. Shibahara et al. [2010] have shown that these jumps can
result in the formation of butterfly pitch angle distributions of energetic ions. In this paper, we investigate
the same mechanism for relativistic electrons. We combine observations of Van Allen probes and numerical
modeling to study electron nonadiabatic scattering in the absence of waves or a compressed magnetopause.

There are two direct applications of our investigation. First, observations of nonadiabatic features in the rel-
ativistic electron pitch angle distribution can be used for probing the magnetic field configuration in the
nightside inner magnetosphere. This nonadiabatic scattering requires a specific magnetotail-like configura-
tion of magnetic field lines. Very localized in MLT injections of hot magnetotail ions can be responsible for
the formation of such configurations, while these injections may not be strong enough to be distinguished in
time profiles of the Dst index. Thus, direct observations of electron pitch angle distributions can provide a tool
for diagnostics of weak injections. Investigation of the role of such injections are important for understanding
inner magnetosphere dynamics (e.g., see discussion in Ukhorskiy et al. [2011a]).

On the other hand, the inner magnetosphere can be considered as a natural laboratory for investigation on
nonadiabatic motion of charged particles in inhomogeneous magnetic field. Well-resolved spacecraft obser-
vations of pitch angle distributions give a chance for testing models describing the violation of adiabaticity.
These models are important for laboratory devices with trapped plasma (see reviews [Baldwin, 1977; Chirikov,
1987; Varma, 2003] and for astrophysical applications [e.g., Hall, 1980]. Moreover, the similar effect of the adia-
baticity destruction influences on models of charged particle motion in the reconnection region [e.g., Egedal
and Fasoli, 2001].
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Figure 1. (a) Time profiles of Dst and AE indices for 1 day of VA Probe observations. (b–g) Time profiles of fluxes of electrons and protons
(in cm−2 s−1 sr−1 keV−1) measured by HOPE onboard VA Probe A, and pitch angle distributions of electrons of different energies
(moment of distribution measurements are indicated by red arrows).

2. Observations

The two Van Allen (VA) Probes spacecraft with identical scientific payload were launched in low inclina-
tion, highly elliptical orbits with apogees near 5.8 RE on 30 August 2012 [Mauk et al., 2013]. For this study,
we use energetic electron fluxes from the Magnetic Electron Ion Spectrometer (MagEIS) [Blake et al., 2013]
and from Relativistic Electron-Proton Telescope (REPT) Instrument [Baker et al., 2013], parts of the Energetic
Particle Composition and Thermal Plasma Suite [Spence et al., 2013]; the background and VLF magnetic field
and measurements from the Energetic and Magnetic Field Instrument Suite and Integrated Science [Kletzing
et al., 2013] magnetometer; VLF electric field measurements from Electric Field and Waves (EFW) instrument
[Wygant et al., 2013]. The MagEIS and the REPT instruments provide pitch angle resolved particle fluxes for
electrons with energies of 20–4000 keV and of 1.6–18.6 MeV.

In Figure 1 we show the evolution of pitch angle distributions on 13 April 2013 captured by the MagEIS and
REPT detectors aboard the VA Probe spacecraft. Figure 1a shows that the geomagnetic activity was rather low
with Dst ∼ 0 (black curve and the scale at the left), while the AE index (red curve and the scale at the right)
clearly demonstrates several injections. The most intensive AE burst was around 04:00 UT and was accompa-
nied by clear evidence of the electron injection (see the rapid and almost dispersiveless increase of electron
fluxes at energies of ∼ 1–40 keV). The ion fluxes do not exhibit a similar increase, thus, the spacecraft was
likely located within the electron boundary of injection but eastward relative to the ion boundary [see Birn
et al., 1997b, and references therein]. The injection is observed around the midnight sector where pure elec-
tron injections without observations of an ion flux increase are not rare (see statistics in Birn et al. [1997a]).
Observed variations of the electron fluxes show that the injection penetrated to L∗ ∼ 5.5. Similar observations
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of injection penetration deep into the inner magnetosphere under relatively quiet geomagnetic conditions
were recently reported by Gkioulidou et al. [2015].

We are mainly interested in electron pitch angle distributions collected at L shell∼ 5–6 in the nightside.
The orbital parameters of the VA Probe spacecraft are shown in Figure 1d—the solid line presents L∗ of VA
Probe A and the dashed line is L∗ of VA Probe B (we show both spacecraft orbits to illustrate the deformation
of the magnetic field observed by Probes A and B). The magnetic local time (MLT) and magnetic latitude (𝜆)
are indicated at the bottom of Figure 1d for VA Probe A. Intense injections affect the magnetic field topol-
ogy in the night sector via generation of a nondipole magnetic field component and a decrease of the dipole
latitudinal component. To indicate these changes, the values B∥∕B⊥ (where B∥ is the magnetic field compo-
nent parallel to the local dipole field, and B⊥ is the magnetic field component transverse to the local dipole
field) at the spacecraft apogees are shown in Figure 1d with red circles (solid for VA Probe A and empty for VA
Probe B with the scale at the right). Note that due to the magnetic field reconfiguration, the spacecraft apogees
are shifted relative to the maximum value of L∗ (compare solid and dashed lines with filled and empty circles,
respectively). During intense injection at 4–5 UT, this ratio B∥∕B⊥ is less than 1 while, in the non-perturbed
condition, it is ∼10. The pitch angle distributions at the three times indicated by the red arrows are shown in
Figures 1c–1e. Before the first injection, all energy channels (from 200 keV up to 4.5 MeV) have pancake pitch
angle distributions with a local maximum at 𝛼 ∼ 90∘ or almost isotropic distributions (for higher energies), see
Figure 1e. However, after the injection, the pitch angle distributions are changed significantly (see Figures 1f
and 1g). We still observe flux maxima at 𝛼∼90∘ for 200–600 keV, while, for larger energies, 3–4.5 MeV, a new
type of pitch angle distribution is formed—Figures 1f and 1g. This is the butterfly distribution with a flux
maxima at intermediate pitch angles 𝛼 ∼ 45∘, 135∘, and a minimum flux at ∼90∘. The minimum flux at 𝛼 ∼ 90∘
is well seen. In contrast to some previous observations [e.g., Fritz et al., 2003; Klida and Fritz, 2009, 2013], the
butterfly pitch angle distribution is formed only for high energies, while for energies < 1 MeV, the pancake
pitch angle distribution is not modified during the entire time interval. A weak minima of fluxes of high-energy
equatorial (with 𝛼 ∼ 90∘) electrons shown in Figure 1e is likely related to the beginning of the formation
of the butterfly pitch angle distribution. It is interesting to note that butterfly pitch angle distributions are
observed for quite long times (from ∼12 up to ∼24 UT). Thus, this type of distributions can be considered as
a quasi-stationary solution of the pitch angle diffusion equation in this spatial region (note that during the
same time interval, similar pitch angle distributions are observed for thermal ∼ 1–3 keV ions, see supporting
information).

One additional important property of the event shown in Figure 1 is the absence of significant wave emis-
sion in the whistler frequency range (not shown, see supporting information). At least, both VA Probes do
not record any whistler wave activity during the entire interval of observations. Of course, observations by
the VA Probes are rather localized in space at the nightside. However, we observe quasi-stationary electron
pitch angle distributions exhibiting the butterfly shape for 12 h interval (i.e., for many periods of azimuthal
drifts around the Earth). Thus, there is likely no scattering of electrons on the dayside as well, otherwise the
corresponding evolution of pitch angle distributions should be detected. We do not consider an unrealistic
situation when the butterfly pitch angle distribution represents the stationary solution of the pitch angle dif-
fusion equation with dominant contribution of particle scattering by waves (to our best knowledge, there is
no example of such solutions). For the same reason (stationarity of the pitch angle distribution), we do not
consider electron scattering by ULF waves as a possible origin of butterfly distributions (VA Probes also do not
detect any significant ULF activity for event under consideration). Moreover, the very low level of the geomag-
netic activity with Dst ∼ 0 indicates that the absence of strong wave emission is rather expected during this
time interval. During the 2 day interval (from 12 April to 14 April) the conditions in the solar wind were very
quiet: the flow pressure was about 1–2 nPa (without any transients). The solar wind flow velocity decreased
from 450 km/s to 380 km/s. Thus, for this event, we do not expect that the magnetopause shadowing effect
can play an important role in loses of the equatorial (pitch angle 𝛼 ∼ 90∘) electrons [e.g., Shprits et al., 2006;
Turner et al., 2012].

In Figure 2 we also show pitch angle distributions collected for five other events. In all these events, we deal
with quiet conditions (absence of Dst variations, absence of whistler wave emissions, absence of transients
in the solar wind flow pressure; see supporting information for additional information about these events).
Thus, the mechanism responsible for the scattering of high-energy equatorial electrons should correspond
to changes of the magnetic field configuration rather than to the wave-particle interaction and/or magne-
topause shadowing. Pitch angle distributions shown in Figure 2 exhibit similar flux variations with electron
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Figure 2. Pitch angle distributions of electrons for six events. The left panels give MAGEIS data, while the right panels show data from the REPT experiment.
Energy channels are coded by colors. The last two panels give the event shown in Figure 1, while detailed information including region of observations
(MLT and 𝜆) about the other events can be found in the supporting information.

energy. For sub-MeV electrons (energy up to 800 keV) the pitch angle distributions have a distinct maxi-
mum at 90∘. This is the so-called pancake distribution ∼sinn 𝛼, n> 0 often observed in the radiation belts
[e.g., Gannon et al., 2007]. For electrons with energies ∼ 800–1000 keV, we observe flat pitch angle distribu-
tions, while minima at 𝛼 ∼ 0∘ and 180∘ are also seen. For electrons with energies larger than 1–1.5 MeV the
local minimum of fluxes at 𝛼 ∼ 90∘ is apparent. This minimum is well distinguished in REPT data (see energy
channels 2 MeV, 2.3 MeV, and 2.9 MeV). For higher energies (> 3 MeV) the lack of 𝛼 ∼ 90∘ electrons some-
times disappears. Thus, we can conclude that, in all shown events, the butterfly pitch angle distributions are
observed for 1.5–3 MeV electrons.

The time interval of observations of almost stationary (unchanged) pitch angle butterfly distributions shown
in Figure 1 is about ∼12 h. During this time interval 1–4 MeV electrons turn around the Earth more than 50
times. Thus, we can consider that observed pitch angle distribution as MLT-averaged one. In this case, elec-
trons are not necessarily scattered directly in the region where spacecraft recorded butterfly distributions
and, as a result, a local configuration of the magnetic field along VA Probe orbit does not necessarily relate
to the magnetic field configuration resulting in electron scattering. For example, relativistic electrons can
be scattered within narrow near equatorial region where magnetic field lines are significantly stretched by
local currents of hot injected ions. If such region is MLT localized and short living (this seems to be a case
for small-scale injections, see Dubyagin et al. [2013] and Gkioulidou et al. [2014, 2015]), we cannot expect that
spacecraft cross the equatorial region exactly in the moment of generation of butterfly distributions. Thus,
we have only indirect evidences of the possible role of magnetic field reconfiguration in electron scattering
resulting in formation of butterfly pitch angle distributions (e.g., bursts of AE index indicate on ion injections,
while ratio B∥∕B⊥ ∼ 1 indicates on field line stretching).

The absence of direct measurements of electron scattering within the region with a magnetic field defor-
mation does not allow to specify model parameters directly from the spacecraft observations. However, we
can use measurements of the ratio B∥∕B⊥ to model the field line stretching. The component B∥ of magnetic
field corresponds to the local value of the Earth dipole field, while B⊥ represents the magnetic field gener-
ated by ion currents. For a weakly disturbed magnetic field configuration we have B∥∕B⊥ ∼ 10 and the dipole
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magnetic field dominates (see the second part of the time interval shown in Figure 1). In contrast, just before
formation of the butterfly pitch angle distributions, spacecraft detected the significant deformation of the
magnetic field: B∥∕B⊥ ∼ 1 and the magnetic field amplitude generated by local currents is about the local
dipole magnetic field (see the beginning of the time interval shown in Figure 1). In the region of VA Probe
observations (magnetic latitude 𝜆 < 20∘, L shell ∼ 6) the dipole magnetic field is represented equally by Bz

and Bx components Bx∕Bz ∼ 1.0 at 𝜆 ∼ 15∘, while within the near equatorial region 𝜆 ∼ 5∘ dipole Bz is four
times larger than Bx (at the midnight plane). Thus, the 10 time decrease of the ratio B∥∕B⊥ roughly can be inter-
preted as a 10 time decrease of the near equatorial Bz magnetic field component (this is the typical effect of
ion injection, see Ganushkina et al. [2002], Tsyganenko et al. [2003], Le et al. [2004], Sitnov et al. [2008], Borovsky
and Denton [2010], Kubyshkina et al. [2011], and Dubyagin et al. [2013]). As a result, at 𝜆 ∼ 15∘ we should have
Bx∕Bz ∼ 10 instead of undisturbed Bx∕Bz ∼ 1. Of course, this very rough estimate cannot be used for the
global simulation of electron dynamics in the radiation belts. However, we can use this estimate to model the
electron local dynamics (scattering at the vicinity of the equatorial plane) and check if such deformation of
the magnetic field is strong enough to provide the electron scattering and formation of the butterfly pitch
angle distribution within MLT-localized short time living region. Thus, we use the following logical scheme in
our investigation. Due to energy localization and long living of the butterfly pitch angle distributions, these
observations likely cannot be explained by mechanisms corresponding to wave-particle interaction and mag-
netopause shadowing. Moreover, low Dst, quiet solar wind, and absence of wave emission observations by
VA Probes support this conclusion. On the other side, observations of bursts of AE index and B∥∕B⊥ varia-
tions indicate on the possible role of ion injections (and corresponding magnetic field reconfiguration) in
electron scattering and formation of butterfly pitch angle distribution. Due to spatial/temporal localization
of the region of electron scattering where magnetic field is supposed to be deformed significantly, we do not
have a strong observational evidence (e.g., direct observations in this region) of such magnetic field defor-
mation. Thus, we suppose that such deformation really occurs and use test particle simulations to check the
corresponding effects on electron scattering. In case, if we reproduce the observed butterfly distribution of
relativistic electrons and explain why this distribution is shaped only for high-energy (> 1 MeV) particles, we
can use these results as additional confirmation of our scenario of electron scattering.

3. Model of the Electron Scattering

The magnetic moment of charged particles is an adiabatic invariant of motion [Alfven and Falthammar, 1963;
Landau and Lifshitz, 1960], i.e., it is conserved with a certain accuracy depending mainly on the ratio of the time
scales of the magnetic field variation and charged particle gyrorotation, and the ratio of scales of magnetic
field inhomogeneity and the charged particle Larmor radius. For realistic conditions in the Earth’s radiation
belts, only the latter ratio is important (in the absence of waves). The disturbed dipole magnetic field in the
nightside radiation belts has a local minimum in the equatorial plane. In this region the spatial scale of the
magnetic field inhomogeneity (the radius of curvature of the magnetic field lines, Rc) approaches the mini-
mum value. In the same region, a charged particle’s Larmor radius𝜌has a maximum value due to the minimum
of the magnetic field amplitude. Thus, the accuracy of magnetic moment conservation is determined at the
equator by the parameter Rc∕𝜌.

The violation of adiabaticity of the charged particle motion results in a jump of the magnetic moment Δ𝜇
(in this paper we use the relativistic adiabatic invariant 𝜇 = p2∕Bm where p = mc

√
𝛾2 − 1, 𝛾 is the gamma

factor, m is the rest mass of the charged particle, B is the magnetic field amplitude, see details in Northrop
[1963] and Sivukhin [1965]). In the case of accurate consideration of 𝜇 behavior along the trajectory, one can
find that the jump Δ𝜇 is a sum of many small changes of 𝜇 [Slutskin, 1964]. However, all these changes are
localized around the magnetic field minimum. Thus, to model Δ𝜇 we need to approximate correctly the mag-
netic field configuration in the vicinity of the equator. At this region the Bz components of the magnetic field
has a finite value, while the Bx component changes the sign. We consider the charged particles dynamics in
the midnight region during a time interval less than 100 of particle bounce periods. For this time interval, MeV
electrons can pass the azimuthal distance around ∼1–2 MLT hours (see comparison of bounce oscillations
and azimuthal drifts of relativistic electrons in Ukhorskiy and Sitnov [2013]). Within this region we can neglect
the effects of the azimuthal magnetic field component and restrict our consideration to 2-D particle motion in
the (x, z)plane. We also consider the effect of the disturbed dipole field with strong currents of hot ions. These
currents are localized at the scale ∼ 𝓁 < RE (RE is the Earth radius) around the equatorial plane [Le et al., 2004;
Dubyagin et al., 2013]. There are two main effects of these currents: the significant decrease of the magnetic

ARTEMYEV ET AL. BUTTERFLY PITCH ANGLE DISTRIBUTION 4284



Journal of Geophysical Research: Space Physics 10.1002/2014JA020865

field Bz and magnetic field line stretching due to the increase of the Bx component (see, e.g., empirical mod-
els [Sitnov et al., 2008; Kubyshkina et al., 2011]). To simulate these two effects one can use the simplified model
of the current sheet with the magnetic field B = B0(z∕𝓁)ex + Bzez , where B0 is the Bx amplitude. The main
difference of this model and the dipole field expanded around the equatorial plane is constant Bz magnetic
field component. This simplification comes directly from our assumption about strong localization of a mag-
netic field perturbation, i.e., the scale 𝓁 is substantially smaller than the scale of dipole field inhomogeneity
∼ LRE . This model is widely used for investigations of charged particle scattering due to nonadiabatic motion
[e.g., Gray and Lee, 1982; Birmingham, 1984; Delcourt et al., 1995]. The Hamiltonian of relativistic electrons with
the rest mass m and the charge −e in this magnetic field has the following form:

H = mc2

√
1 +

p2
x + p2

z

m2c2
+ e2

m2c4

(
Bzx −

B0

𝓁
1
2

z2

)2

(1)

where (px , pz) are components of the electron momentum (the component py is conserved due to the system
homogeneity along the y direction; thus, py can be removed by a shift of the coordinate origin). Hamiltonian
(1) does not depend on time, thus, we can introduce a constant energy H and corresponding gamma factor
𝛾 = H∕mc2 = const. We use dimensionless variables: (px , pz)∕𝛾mc → (px , pz), H∕𝛾mc2 → H, (x, z)∕l → (x, z)
where l is a characteristic spatial scale which is defined below. We also introduce the parameter 𝜅 = Bz𝓁∕B0l.
The Hamiltonian (1) takes a form

H =

√
𝛾−2 + p2

x + p2
z +

Ω2
0l4

c2𝓁2𝛾2

(
𝜅x − 1

2
z2
)2

(2)

where Ω0 = eB0∕mc. We chose l =
√

c𝓁𝛾∕Ω0, so that Ω2
0l4∕c2𝓁2𝛾2 = 1. The new normalized time is tc∕l → t.

The final form of the Hamiltonian is

H =
√

𝛾−2 + p2
x + p2

z +
(
𝜅x − 1

2
z2
)2

(3)

where 𝜅 = (Bz∕B0)
√
Ω0𝓁∕c𝛾 . For relativistic particles |p| ∼ mc𝛾 the parameter 𝜅 is equal to

√
Rc∕𝜌. It is

also important to note that the absolute value of normalized Hamiltonian (3) is H = 1. Thus, the Hamiltonian
equations for Hamiltonian (3) can be written as

ṗx = −𝜅
(
𝜅x − 1

2
z2
)
, ṗz = z

(
𝜅x − 1

2
z2
)

ẋ = px , ż = pz (4)

Due to peculiarities of the used normalization, equation (4) coincide with equations of nonrelativistic charged
particle motion in the current sheet [e.g., Büchner and Zelenyi, 1989; Zelenyi et al., 2013]. Therefore, we can use
results obtained earlier for such a system [Chen, 1992; Delcourt et al., 1994, 1996a, 1996b] to describe scattering
of relativistic electrons in the radiation belts. Formally speaking, equation (4) can be rewritten in the classical
nonrelativistic form with vy = (𝜅x − z2∕2), (vx , vz) = (px , pz):

⎧⎪⎨⎪⎩
v̇x = −𝜅vy, v̇z = zvy

v̇y = 𝜅vx − zvz

ẋ = vx , ż = vz, ẏ = vy

(5)

Such a transformation of a relativistic system (1) to nonrelativistic equation (5) is possible due to conservation
of the electron energy in the absence of electric fields.

Let us consider electron dynamics at the geostationary orbit L = 6.6 in the case of a strong magnetic field dis-
turbance. According to the empirical models and spacecraft observations [Ganushkina et al., 2002; Tsyganenko
et al., 2003; Le et al., 2004; Sitnov et al., 2008; Borovsky and Denton, 2010; Kubyshkina et al., 2011; Dubyagin et al.,
2013], we take 𝓁 = RE . The same models and the spacecraft observations shown in Figure 1 suggest to use
rather small value of the ratio Bz∕B0. The ratio of parallel (i.e., Bz) and transverse (i.e., Bx) magnetic field compo-
nents is about 1 (in Figure 1) while for dipole field B∥ should be much larger than B⊥ along the VA Probe orbit
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Figure 3. Profile of 𝜅 as a function of 𝛾 factor and electron energy.

(see the value of the ratio B∥∕B⊥ at
the end of time interval shown in
Figure 1). Thus, for our modeling, we
take Bz∕B0 ∼0.15 (see discussion of this
choice in section 2.) In this case, the
profile of 𝜅 as a function of 𝛾 is shown
in Figure 3. One can see that 0.5 MeV
electrons have 𝜅 ≈ 2.1, 2 MeV electrons
have 𝜅 ≈ 1.3, and 4 MeV electrons have
𝜅 ≈ 1. Of course, these values of 𝜅

strongly depend on our assumptions of
𝓁 and Bz∕B0 values.

Several examples of electron trajecto-
ries described by this equation (5) are
shown in Figure 4. One can see the evo-
lution of the electron equatorial pitch
angle 𝛼0 along the trajectory (we cal-
culate this pitch angle at each point
using conservation of the total particle
energy and the equation for the mag-
netic moment 𝜇). One can see that for
𝜅 = 2.1 we have a jump Δ𝛼0 ∼1∘ for the
initially almost field-aligned electron. At
the distance from the equatorial plane,
the magnetic moment (and the equato-

rial pitch angle 𝛼0) is almost constant. Actually, the magnetic moment 𝜇 (and 𝛼0) calculated as a ratio of
the perpendicular energy and magnetic field amplitude can oscillate along the trajectory with an amplitude
∼ 𝜅−2𝜇 because 𝜇 is an approximate integral of motion. However, these oscillations can be removed by intro-
ducing the improved adiabatic invariant (see Appendix B for details). This improved adiabatic invariant is
equal to 𝜇 in certain points along the trajectory. For example, 𝜇 calculated at the mirror points conserves with
higher accuracy [e.g., Mozer, 1966; Anderson et al., 1997]. This property of the magnetic moment is important
for understanding the particle trajectory calculated for 𝜅 = 2.1 and a large initial 𝛼0 (see Figure 4). In this case,
we deal with oscillations of 𝜇 (see oscillations of 𝛼0) along the trajectory, but at the mirror points, values of
𝜇 are constant (see insert panel). Thus, even for a large number of particle crossings of the equatorial plane,
the equatorial pitch angle does not change, i.e., near-equatorial particles are not scattered in the system with
𝜅 = 2.1. This behavior of Δ𝛼0 (or Δ𝜇) is well described by the semianalytical model developed and tested
numerically by Delcourt et al. [1994].

The situation is changed for 𝜅=1.3: in this case, we obtain the relatively large jump Δ𝛼0 even for a
near-equatorial electron. This range of 𝜅 and 𝛼0 values is already not covered well by the Delcourt et al.
[1994] model (see discussion in Shibahara et al. [2010]). Figure 4 shows that both almost field-aligned and
near-equatorial electrons change 𝛼0 substantially during one to a few crossings of the equatorial plane.

Finally, for 𝜅 = 1 we observe almost chaotic behavior of both almost field-aligned and near-equatorial elec-
trons in the vicinity of the equator—the magnetic moment (i.e., 𝛼0) is not an adiabatic invariant anymore
[Northrop, 1963; Sivukhin, 1965] and pitch angle scattering is extremely strong. Particle trajectories in this case
resemble Speiser orbits [Speiser, 1965, 1967] described by many authors [see Chen, 1992; Zelenyi et al., 2013,
and references therein].

To demonstrate the effect of electron scattering due to nonadiabaticity of motion, we integrate numerically
106 trajectories with an initially uniform distribution of equatorial pitch angles. Each particle trajectory is
integrated until it crosses the equatorial plane 40 times. Final distributions are shown in Figure 5 for three val-
ues of 𝜅. One can see that for 𝜅 = 2.1 we obtain the distribution without field-aligned particles and with a
plateau-like distribution for intermediate to large pitch angles. The same distribution can be obtained ana-
lytically using the equations derived by Delcourt et al. [1996a, 1996b] (see Appendix A). This semianalytical
distribution is shown by the grey curve. Thus, we have electron scattering toward the larger pitch angles with
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Figure 4. Six trajectories of electrons for 𝜅 = 2.1, 𝜅 = 1.3, 𝜅 = 1, and two values of 𝛼0.

the formation of the classical pancake distribution ∼ sinn 𝛼0, n> 0 (see observations by Gannon et al. [2007,
and references therein]).

For 𝜅=1.3, and 𝜅=1, we obtain distributions with minima at small and large pitch angles. These distributions
resemble the butterfly distributions shown in the previous section. The model of Delcourt et al. [1996a, 1996b]
cannot describe the large pitch angle range of these distributions. The decrease of particle flux at larger pitch
angles 𝛼0 > 60∘ resembles a function cosn 𝛼0. The dependence of the factor n on 𝜅 is estimated in the next
section.

4. Electron Pitch Angle Diffusion

To characterize the charged particle scattering in system (5), Birmingham [1984] derived the equation for the
jump Δ𝜇

Δ𝜇∗ ≈ C(𝜇∗, 𝜅) cos 𝜗0 exp
(
−𝜅2F(𝜇∗)

)
(6)

where 𝜇∗ = sin2 𝛼0, the positive function C depends on the initial pitch angle, and 𝜅, 𝜗0 is a gyrophase at
the moment of particle crossing the equatorial plane, and the function F(𝛼0) has the following asymptote for
𝛼0 → 90∘ (see Appendix B for details):

F(𝜇∗) → −2
3

ln (1 − 𝜇∗) (7)

Thus, for 𝜇∗ → 1 we have

Δ𝜇∗ ≈ C(𝜇∗, 𝜅) (1 − 𝜇∗)2𝜅2∕3 cos 𝜗0 (8)

While for small 𝜇∗, the asymptote is Δ𝜇∗ →
√
𝜇∗. Thus, for the jump of pitch angle Δ𝛼0 = Δ𝜇∗∕ sin(2𝛼0)

we have

Δ𝛼0 ≈ cos 𝜗

{
const0, 𝛼0 ∼ 0

const1 ⋅ cos
2𝜅2

3
−1

𝛼0, 𝛼0 ∼ 90∘
(9)
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Figure 5. Pitch angle distributions for 𝜅 = 2.1, 𝜅 = 1.3, and 𝜅 = 1. (top) The
grey curve shows the semianalytical distribution obtained with a mapping
technique (see Appendix A). (bottom) The grey region shows the range
between two curves const ⋅ cos0.37 𝛼0 and const⋅ cos0.83 𝛼0 (see section 4).

Equation (9) shows that for 𝜅 >
√

3∕2
the pitch angle jump becomes small
at large pitch angles, while for small 𝜅
this jump increases. However, here we
should mention that equation (6) was
derived for the asymptotic approxima-
tion 𝜅 ≫ 1 (see Appendix B for details)
and a priori should not be valid for
𝜅 ∼1. Thus, the following conclusion
should be taken into account only
as an explanation of the numerically
obtained results shown in Figure 5.

To estimate the shape of the pitch
angle distribution, we use the diffu-
sion equation (the applicability of this
equation to the system with non-
adiabatic scattering was shown by
Bernstein and Rowlands [1976], see
also Chirikov [1987]):

𝜕f
𝜕t

= 𝜕

𝜕𝜇∗

(
D

𝜕f
𝜕𝜇∗

)
(10)

where f (𝜇∗) is averaged over bounce
oscillations and D(𝜇∗) = ⟨(Δ𝜇∗)2⟩∕
𝜏(𝜇∗), 𝜏 is the bounce period (the
diffusion coefficient is averaged over
𝜗0 values). The stationary solution of
equation (10) is

f (𝜇∗) ∼

𝜇∗

∫
𝜇∗

LC

d�̃�∕D(�̃�) (11)

where 𝜇∗
LC corresponds to the loss

cone angle (i.e., f (𝜇∗
LC) = 0). For small

values of 𝜇∗, equation (11) gives f (𝜇∗) ∼ ln(𝜇∗∕𝜇∗
LC) (with D ∼ 𝜇∗), while for 𝜇∗ → 1 we have f (𝜇∗) ∼

const + (1 − 𝜇∗)𝜂 with 𝜂 = 1 − 4𝜅2∕3. The distribution f (𝜇∗) can be rewritten in terms of pitch angle as
f (𝛼0) = f (𝜇∗)(d𝜇∗∕d𝛼0):

f (𝛼0) ∼

{
2 sin(2𝛼0) ln

(
sin 𝛼0

sin 𝛼LC

)
, 𝛼0 ∼ 𝛼LC

const + 2 cos1+𝜂∕2 𝛼0, 𝛼0 ∼ 90∘
(12)

Equation (12) shows that for 𝜅 < 3∕2 (i.e., 1+ 𝜂∕2> 0), the pitch angle distribution should have a minimum at
large pitch angles, because df∕d𝛼0 ∼ −(1+𝜂∕2) < 0. Thus, the critical value of 𝜅 is about 1.2–1.5: at 𝜅 >

√
3∕2

the pitch angle jumps become small and at 𝜅 > 3∕2 the distribution function has a minimum at large pitch
angles. The latter criterion is supported by numerical results shown in Figure 5. Of course, all these discussions
should be considered carefully because both values of 𝜅 are relatively far from the asymptotic range 𝜅 ≫ 1
assumed to derive equation (6).

5. Discussion and Conclusions

One of the brightest manifestations of the charged particle nonadiabatic scattering in the nightside inner
magnetosphere is observation by high-latitude spacecraft of the so-called boundary of isotropic precipi-
tations [Imhof et al., 1977, 1979; Sergeev and Tsyganenko, 1982]. For a given particle energy, this boundary
determines that such L shell region that conjugated observations of high-latitude spacecraft demonstrate
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almost identical values of fluxes for trapped and precipitating particles. Comparison of models of charged par-
ticle scattering and spacecraft observations showed that this boundary is formed by nonadiabatic scattering
of charged particles (both protons and electrons) in the equatorial region in the case of significant reconfig-
uration of the magnetic field (the decrease of the equatorial magnetic field and field line stretching) [Sergeev
et al., 1983]. Thus, observations of isotropic boundaries by high-latitude spacecraft can be used for prediction
of the magnetic field configuration in the equatorial nightside region [West et al., 1978a, 1978b]. Model results
showed that the isotropic boundary can be formed at 𝜅 ∼ 8 [Sergeev et al., 1983]. This value of 𝜅 is significantly
larger than the typical values resulting in scattering of charged particles. However, the isotropic boundary
is formed by particles with small pitch angles (only these particles can reach high latitudes), while for these
particles the effective 𝜅 parameter is smaller than the model 𝜅 (see semiempirical model by Delcourt et al.
[1995, 1996a]). Thus, observation of the isotropic boundary at high latitudes provides an opportunity to esti-
mate the field line radius of curvature in the equatorial plane. In this study we demonstrated the alternative
approach for probing the magnetic field configuration with measurements of near-equatorial distributions
of high-energy electrons. According to our results, observations of the butterfly pitch angle distributions for
certain electron energies should directly tell us about a value of 𝜅. The main advantage of our method corre-
sponds to the local observations of scattered electrons; thus, we can determine a value of 𝜅 for a given L shell
where butterfly distributions are measured. In contrast, to determine a value of 𝜅 from the observations of the
isotropic boundaries, one needs to use the magnetic field models to find out the L shell region conjugated to
high-latitude measurements. In the case of the significant deformation of the magnetic field configuration,
the procedure of such projection is not simple. However, our method cannot provide a global (for different
L shells) distribution of 𝜅 parameter, while measurements of high-latitude spacecraft allow to calculate 𝜅 for
different L shells. Thus, both the methods (local observations of the butterfly distributions and high-latitude
observations of the isotropic boundary) supplement each other giving more chances to probe a fine structure
of the magnetic field configuration in the inner magnetosphere.

The test particle simulations and the analytical estimates presented in section 4 demonstrate that electron
scattering in the localized region with the deformed magnetic field can produce the butterfly pitch angle
distributions as a stationary solution of the pitch angle diffusion equation. Electrons should cross the equa-
torial region less than 100 times to shape the almost stationary pitch angle distribution [see also Shibahara
et al., 2010]. Thus, the process of formation of butterfly pitch angle distribution requires about 1 min (for
> 1 MeV electrons at L∼6, see Ukhorskiy and Sitnov [2013]). Here we also can mention the alternative pro-
cess which can be responsible for electron scattering on time scales of hours (e.g., many azimuthal periods of
electron motion). In presence of the deformation of the magnetic field configuration at the dayside, due to
action of a solar wind dynamic pressure, relativistic electrons can be scattered by the mechanism involving
the bifurcation of drift orbits [see Shabansky, 1971]. This mechanism destroys the second adiabatic invari-
ant of electrons providing jumps of equatorial pitch angles (it is especially effective for small pitch angles,
see Ukhorskiy et al. [2011b]). Particles drifting azimuthally are scattered at the dayside magnetosphere: each
pitch angle jump corresponds to one period of azimuthal electron motion; thus, this mechanism is much
slower than the destruction of magnetic moment due to electron scattering at nightside (in latter case each
jump corresponds to one bounce period). However, as we observed long-living butterfly pitch angle dis-
tributions (e.g., Figure 1), the electron scattering due to orbit bifurcation can not be excluded from the
consideration. The bifurcation of drift orbits is supported by magnetic field deformation at dayside and,
thus, requires relatively significant dynamical pressure of solar wind. For six events shown in Figure 2, a solar
wind dynamical pressure varies within following ranges (on 1 day time interval): 17 and 18 January 2013,
Psw ∈ [1, 15] nPa; 1 February 2013, Psw ∈ [2, 4] nPa; 22 March 2013, Psw ∈ [0.5, 1.5] nPa, 13 April 2013,
Psw ∈ [1, 2] nPa; and 19 April 2013, Psw ∈ [0.7, 1.2] nPa. Thus, only for two events (17 January 2013 and
18 January 2013), dynamical pressure is high enough, while for other four events we have rather weak Psw

(Psw should be larger than 3 nPa to provide significant scattering of pitch angles within geostationary orbit,
see Ukhorskiy et al. [2011b, Figure 3]). These data show that the drift orbit bifurcation should be considered in
future studies, but this mechanism solely cannot provide electron scattering in all observed events.

Observations of the butterfly distributions by the spacecraft at L shell ∼ 6 with conjugated measurements
of the magnetic field deformation (e.g., B∥∕B⊥ ∼ 1) and particles injections (AE bursts) indicate that electron
scattering at the deformed magnetic field can be responsible for formation of such distribution. The test
particle tracing and analytical estimates confirm that charged particle scattering results in formation of but-
terfly distributions. Thus, we could notice that nonadiabatic scattering can be important for evolution of
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few MeV electron fluxes even if we consider L shell ∼ 6 under relatively quiet conditions. Thus, one cannot
ignore nonadiabatic effects in modeling the global dynamics of electron fluxes in the radiation belts—these
effects potentially can be more important than electron scattering by whistler waves in the nightside [see also
Artemyev et al., 2013]. To incorporate nonadiabatic scattering into diffusion models, one should start by cal-
culation of jumps of the adiabatic invariant in the prescribed magnetic field configuration and finish with the
construction of diffusion coefficients [e.g., Bernstein and Rowlands, 1976; Rechester and White, 1980; Büchner
and Zelenyi, 1989] and numerical testing of final models by means of the trajectory integration or the mapping
technique [see, e.g., Chen et al., 1985; Tagare, 1986; Chirikov, 1987; Basu and Rowlands, 1986]. An example of
such a closed semianalytical model of nonadiabatic diffusion was proposed by Young et al. [2008]. However,
two problems should be solved before including this or any similar model in global diffusion codes.

The first problem corresponds to the model peculiarities of electron scattering. The properties of this scat-
tering can significantly vary depending on system parameters. For example, at 𝜅 > 3∕2, we do not expect to
observe any pitch angle diffusion for equatorial electrons [see Delcourt et al., 1995; Young et al., 2008], while
at 𝜅 < 3∕2 this diffusion is important (see section 3 and Shibahara et al. [2010]). Additionally, in the vicinity
of the loss cone (at small pitch angles), the nonadiabatic scattering is nondiffusive (i.e., the averaged jump is
not equal to zero and is always positive, see Delcourt et al. [1994, 1995]), while analytical estimates give only
Δ𝜇 ∼ sin 𝜗0 with zero average value for a random uniform distribution of 𝜗0 [Howard, 1971; Cohen et al.,
1978; Birmingham, 1984; Chirikov, 1987; Varma, 2003]. Moreover, as we discuss in Appendix B, most analytical
expressions for Δ𝜇 should be tested by numerical calculations because these expressions were derived using
not well justified methods. Therefore, more accurate models with thorough numerical testing for wide range
of 𝜅 are required to correctly simulate the nonadiabatic scattering.

The second problem corresponds to predictions of the magnetic field configuration vitally important for
nonadiabatic scattering. The empirical magnetic field models [e.g., Tsyganenko et al., 2003; Sitnov et al., 2008;
Kubyshkina et al., 2009] predict the evolution of the magnetic field topology during storm activity when the
variation of geomagnetic indexes (Dst, Kp, etc.) is well distinguished. However, a change of the magnetic field
configuration can potentially be induced by small-scale injections of hot ions from the magnetotail. Such
injections (if localized in MLT) may weakly influence the Dst index and, as a result, effects of such injections
are not included into modern models describing the magnetic field distribution in the inner magnetosphere.
Thus, for correct modeling of electron nonadiabatic scattering in the nightside, one needs to collect statistics
of modifications of the magnetic field configuration and develop a probabilistic empirical model which can
account for small-scale, short-duration events of electron nonadiabatic scattering.

On the other hand, observations of fine-structured pitch angle distributions (e.g., butterfly distributions) in
the inner magnetosphere can be applied for testing and improving magnetic field models. The rather com-
mon approach corresponds to tracing injected charged particles in model magnetic fields and comparison
of result thereby obtained with spacecraft observations. In this case, the global configuration of the model
magnetic field can be tested [e.g., Reeves et al., 1991; Lutsenko et al., 2005, 2008]. Thus, a successful reproduc-
tion of observed butterfly pitch angle distributions in the framework of test particle modeling should indicate
the ability of magnetic field models to simulate the corresponding magnetic field configuration necessary for
nonadiabatic electron scattering. Moreover, the recent statistical study of ion butterfly pitch angle distribu-
tions in the near-Earth magnetotail [Wang et al., 2013] provides the opportunity for using the same approach
to test magnetic field models in this important region. Such testing of empirical magnetic field models is left
for future investigations.

Spacecraft observations of pitch angle distributions are significantly influenced by electron propagation
along field lines, i.e., the adiabatic electron motion along field lines can change the pitch angle distribution.
This is not the case for isotropic distributions [Whipple et al., 1991], but the mapping of anisotropic pitch
angle distributions along field lines modifies them in many respects. If we deal with the pancake distribution
∼ sinn 𝛼0 (n> 0) then the general shape of this distribution is conserved with electron propagation toward
higher latitudes (see Appendix C). However, butterfly pitch angle distributions with ∼ cosn 𝛼0 for equatorial
pitch angles changes substantially with latitude and they can almost lose the minimum at perpendicular pitch
angles at high latitudes (see Appendix C). Thus, it is important that VA Probes collect butterfly distributions
near the equatorial plane where these distributions are not affected significantly by mapping along field lines.

To conclude, in this paper we have shown examples of butterfly pitch angle distributions observed for long
time intervals under rather quiet geomagnetic conditions. We have pointed out that observations of butterfly
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distributions are accompanied by ion injections (manifested by bursts of AE index) and deformation of the
dipole magnetic field. We have demonstrated that test particle simulations of electron scattering in deformed
magnetic field configuration can reproduce the butterfly distributions as a stationary solution of pitch angle
diffusion equation. Based on spacecraft observations and theoretical estimates, we have suggested that elec-
tron nonadiabatic scattering can take place even in the rather quiet inner magnetosphere. This scattering may
be induced by electron demagnetization in the vicinity of the equatorial plane due to the significant magnetic
field deformation in this region by currents of hot injected ions. Thus, observations of butterfly pitch angle
distributions of high-energy electrons can be used to probe the magnetic field configuration in the outer radi-
ation belt. We have demonstrated that the theoretical description of nonadiabatic electron scattering should
be improved to take into account the effect of significant scattering of equatorial electrons. Our results show
that the modulation and shaping of electron pitch angle distributions can result from nonadiabatic effects in
the absence of waves and magnetopause shadowing.

Appendix A
Delcourt et al. [1994, 1995] have derived the simple equation describing the charged particle scattering at the
magnetic field reversal region. This equation gives the particle pitch angle �̂�0 after one passage through the
equatorial plane for system (5):

sin2 �̂�0 = sin2 𝛼0 +
cos4 𝛼0

g4(𝜅)
−

2 cos2 𝛼0 sin 𝛼0

g2(𝜅)
sin 𝜗0 (A1)

where 𝛼0 is an initial pitch angle, 𝜗0 is a gyrophase value at the moment of equator crossing (due to the fast
gyrorotation one can assume that𝜗0 is a quasi-random value with a uniform distribution at [0, 2𝜋]), while func-
tion g(𝜅) is obtained by approximation of numerically calculated trajectories [Delcourt et al., 1996a, 1996b]

g(𝜅) =
√

0.65 + exp (𝜅1.7 − 1) (A2)

Having equation (A1) and assuming 𝜗0 to be a random value, one can construct a simple map 𝛼0 → �̂�0.
There are several peculiarities of this map: (1) all initially field-aligned particles with 𝛼0 = 0 already after the
first scattering will have the same pitch angle �̂�0 = arcsin(g−2); (2) equatorial particles with 𝛼0 ≈ 𝜋∕2 are
not scattered:

Δ𝛼0 = �̂�0 − 𝛼0 ≈
cos3 𝛼0

2g4(𝜅) sin 𝛼0
−

2 cos 𝛼0

g2(𝜅)
sin 𝜗0 (A3)

and Δ𝛼0 = 0 for 𝛼0 = 𝜋∕2.

Appendix B
In this Appendix B we give a brief overview of theories of the adiabatic invariant conservation and discuss in
details the particular expression derived by Birmingham [1984]. Historically, the nonadiabatic scattering for
particular plasma physical systems was investigated first for magnetic field configurations typical for labo-
ratory mirror traps (see reviews [Baldwin, 1977; Chirikov, 1987]). However, the general question of accuracy
of the adiabatic approximation has an even longer story than applications of this approximation for plasma
physics. The exponential estimates of conservation of the adiabatic invariant for charged particle motion in
a slowly time varying magnetic field (or a magnetic field slowly depending on coordinates) were obtained
more than 50 years ago [Hertweck and Schlüter, 1957; Dykhne, 1960; Dykhne and Pokrovskii, 1961; Vandervoort,
1961; Garrido and Gascón, 1962], while the rather general approach for derivation of the closed expression for
a jump Δ𝜇 of the adiabatic invariant was proposed by Slutskin [1964].

Let us consider a general Hamiltonian system with a Hamiltonian H(r, p, 𝜆) depending on the slowly changing
parameter 𝜆 = 𝜆(𝜏) and 𝜏 = t∕𝜅2. Conjugated variables (r, p) are changing periodically. One of the exam-
ples of such a system is a charged particle motion in the magnetic field slowly changing with time or slowly
varying along the particle trajectory. In the 2-D system with the fast gyrorotation and the slow motion along
field line, the slow time can be replaced by the coordinate along the field line. It is well known that for such
system one can introduce an adiabatic invariant 𝜇 = (2𝜋)−1 ∮ pdr [Landau and Lifshitz, 1960]. The accuracy
of conservation of this invariant is defined by the rate of 𝜆 variation. The simple transformation of variables
(r, p) → (𝜗, 𝜇) (i.e., guiding center approximation) gives us the following Hamiltonian:

H = H0(𝜇, 𝜆) + 𝜅−2𝜆′H1(𝜇, 𝜗, 𝜆) (B1)
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where 𝜆′ = d𝜆∕d𝜏 and 𝜗 is a variable conjugated to 𝜇 (i.e., gyrophase). Thus, in the absence of 𝜆 variation with
time, the invariant 𝜇 conserves, while for 𝜆′ ≠ 0 we have

�̇� = 𝜕H
𝜕𝜗

= 𝜅−2𝜆′
𝜕H1

𝜕𝜗
(B2)

Equation (B2) shows that a change of 𝜇 is about small parameter 𝜅−2. Moreover, the initial Hamiltonian is
periodic relative to the 𝜗 variation; thus, the variation of 𝜇 is also periodic and after averaging over 𝜗 one can
decrease the variation amplitude of𝜇 to∼ 𝜅−4𝜆′′. Such a procedure of averaging can be repeated many times,
e.g., Kulsrud [1957] showed that a change of 𝜇 is about 𝜅−2N where N is a number of possible derivatives of
the 𝜆 function. If 𝜆(𝜏) is an analytical function with infinite number of derivatives then the estimate of Δ𝜇 is
smaller than 𝜅 in any degree [Lenard, 1959]. In this case, the change Δ𝜇 is exponentially small. To derive this
estimate one can use the procedure of the infinite number of averagings [e.g., Nekhoroshev, 1977].

The modification of the method proposed by Slutskin [1964] gives the proof of the exponential accuracy
of 𝜇 conservation both for Hamiltonian (B1) and for Hamiltonian with slow-fast variables [Neishtadt, 2000;
Su, 2012]:

Δ𝜇 = O
(

exp(−a𝜅2)
)

(B3)

where the coefficient a depends only on properties of the 𝜆 function. If we can analytically extend the 𝜆 func-
tion to complex domain Θ: |ℑ𝜏| < const1 + conts2|ℜ𝜏| then a ≥ |Q(𝜇, 𝜏)| where level lines of Q(𝜇, 𝜏) are
inside the domain Θ and

Q = ℑ

𝜏

∫
0

𝜕H0(𝜇, 𝜉)
𝜕𝜇

d𝜉 (B4)

Equation (B4) shows that the principal factor in estimation of𝜇 conservation is played by singular points of the
frequency 𝜕H0∕𝜕𝜇 (i.e., gyrofrequency) in the complex plane (there is no singular point of this frequency in
the real axis 𝜏 for 𝜆(𝜏)with infinite number of derivatives). For the class of so-called linear systems (i.e., systems
where the frequency 𝜕H0∕𝜕𝜇 does not depend on 𝜇) the estimate given by equation (B3) can be obtained
explicitly by a simple approach [see Hertweck and Schlüter, 1957; Dykhne, 1960; Dykhne and Pokrovskii, 1961;
Vandervoort, 1961; Garrido and Gascón, 1962]. For nonlinear systems with the frequency depending on 𝜇, the
estimate given by equation (B3) was derived by Neishtadt [1984] [see also Arnold et al., 2006].

Of course, equation (B3) provides only an estimate of accuracy of 𝜇 conservation, while equations of Δ𝜇
should be derived for any particular system separately (see, e.g., review by Varma [2003]). The general
approach for Δ𝜇 determination consists in integration of equation (B2) along the complex plane with the cal-
culation of the main part of the integral in the singular point 𝜏0 where the frequency 𝜕H0∕𝜕𝜇 equals to zero
[Landau and Lifshitz, 1960; Arnold et al., 2006]. In case of magnetic field configuration with the cusp region
(i.e., X line), Howard [1971] derived the expression for Δ𝜇 ∼ exp(−𝜅2F̃(𝛼0)) for an arbitrary order of singularity
𝜕H0∕𝜕𝜇 ∼ (𝜏 − 𝜏0)p (here p> 0, 𝛼0 is the equatorial pitch angle, i.e., the factor F̃ does not depend on the par-
ticle energy). Using the same approach, Cohen et al. [1978] obtained expressions for jumps of the magnetic
moment in various configurations of magnetic field typical for mirror machines (magnetic traps). Several other
configurations of magnetic field were considered in papers by Chen et al. [1985], Tagare [1986], Basu and Row-
lands [1986], and Yavorskij et al.[2002] (see also reviews by Chirikov [1987] and Varma [2003]). Some of these
expressions for 𝜇 were tested with laboratory experiments [Leffel and Gray, 1969; Bora et al., 1980; Notte et al.,
1993] and numerically [Rusbridge, 1977; Howard, 1978; Yavorskij et al., 2002].

For system (5) the expression of Δ𝜇 was derived by Birmingham [1984]:

Δ𝜇∗ ≈ 𝜋
√
𝜇∗ (𝜅∕2)1∕4 cos 𝜗0 exp

(
−𝜅2F(𝜇∗)

)
(B5)

where 𝜇∗ is the normalized magnetic moment independent on energy (𝜇∗ = sin2 𝛼0). The function F(𝜇∗) is
defined as

F(𝜇∗) =

1

∫
0

(1 − 𝜉2)d𝜉√
1 − 𝜇∗

√
1 − 𝜉2

(B6)
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Figure B1. Profile of F(𝜇∗) function plotted versus 1𝜇∗.

Figure B1 shows profile of F(𝜇∗) and an asymptote for 𝜇∗ → 1 (near-equatorial electrons).

The exponential factor ∼ 𝜅2F(𝜇∗) helps us to describe the formation of the butterfly pitch angle distribution.
However, here we should notice one important detail about the preexponential coefficient in equation (B5).
To derive equation (B5) Birmingham[1984] performed the integration in equation (B2) along the unperturbed
trajectory, i.e., the conservation of 𝜇 was assumed for the integral calculation (the similar approach can be
found in many other publications, e.g., Howard [1971], Cohen et al. [1978], Chen et al. [1985], Tagare [1986],
Basu and Rowlands [1986], and Yavorskij et al. [2002]). This procedure cannot be fully justified [see Neishtadt,
1981]. Adiabatic invariant 𝜇 is only an approximate integral of motion, and along the trajectory 𝜇 oscillates
with an amplitude ∼ 𝜅−2. Thus, an unperturbed trajectory can differ from the real trajectory. This difference
potentially can contribute to the final form of an estimation Δ𝜇 (see example and discussion of this problem
in Dykhne and Chaplik [1961]). Thus, one should integrate along the real trajectory including 𝜇 variation (in
many sense this problem is similar to integration of the dynamical systems with non-Euclidian geometry, see
discussion in Littlejohn [1988]). One of the possible more rigorous approaches consists in consideration of the
jump Δ𝜇 as a sum of many small changes (each change corresponds to one period of gyrorotation). In this
case, each change is calculated on a small time step when𝜇 is approximately constant, while from step to step
the evolution of 𝜇 is taken into account [Slutskin, 1964]. Therefore, the preexponential factor in equation (B5)
can be correct, but this correctness should be tested numerically [see, e.g., Anderson et al., 1997; Young et al.,
2002] or with the more accurate analytical approach.

Appendix C
The evolution of the pitch angle distribution along field lines can significantly modify this distribution, espe-
cially if it is anisotropic. In this Appendix C we briefly describe the results of mapping of several distributions
along field lines. We start with the relativistic Maxwell distribution (i.e., Jüttner distribution, see Synge [1957])
f (𝛾) ∼ 𝛾2 exp(−𝛾∕𝜃) and modify it to include an anisotropy

f ∼ 𝛾2 exp
(
− 𝛾

𝜃

√
1 − (1 − 𝛾−2)𝜒 sin2 𝛼0

)
(C1)

where 𝛼0 is the equatorial pitch angle, 𝜒 is an anisotropy rate, and mec2𝜃 is the typical electron energy. For
small energies 𝛾 ≈ 1+ (1∕2)(v∕c)2 distribution (C1) transforms to the anisotropic Maxwell distribution. Using
the conservation of the magnetic moment and energy, one can recalculate distribution (C1) from the equato-
rial plane to any point at the field line with a given value of the magnetic field B = bBeq [Whipple et al., 1991]:
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Figure C1. Three examples of evolution of pitch angle distributions with magnetic field relative amplitude b.

f ∼ 𝛾2 exp
(
− 𝛾

𝜃

√
1 − 𝜒b−1(1 − 𝛾−2) sin2 𝛼

)
(C2)

where 𝛼 is a local value of pitch angle. The similar procedure can be applied to the anisotropic distribution
f ∼ 𝛾−2l sin2s 𝛼 (where l and s ∈ [0.1, 2] are constant parameters) often used for the approximation of
spacecraft observations and for analytical estimates [e.g., Gannon et al., 2007; Summers et al., 2009]:

f ∼ 𝛾−2lb−s sin2s 𝛼 (C3)

We also consider pitch angle distribution with local minimum at the large pitch angles:

f ∼ 𝛾−2l sin2s 𝛼0(𝜒 + cos2 𝛼0) (C4)

with 𝜒 > 0. This distribution can be rewritten at some point along field lines as

f ∼ 𝛾−2l sin2s 𝛼
(
𝜒 + 1 − b−1 sin2 𝛼

)
(C5)

Figure C1 shows all three distributions at the equator and calculated for three values of b =1.15, 1.35, and 2.25
(for the dipole field these values correspond to magnetic latitudes 10∘, 15∘, and 25∘). One can see that for dis-
tributions (C2) and (C3) the evolution along the field line does not change the shape of 𝛼 profiles. In contrast,
for distribution (C5) the increase of b results in the disappearance of the minimum at large pitch angle.
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