89 research outputs found

    Direct Depolymerization Coupled to Liquid Extraction Surface Analysis-High-Resolution Mass Spectrometry for the Characterization of the Surface of Plant Tissues

    Get PDF
    The cuticle, the outermost layer covering the epidermis of most aerial organs of land plants, can have a heterogeneous composition even on the surface of the same organ. The main cuticle component is the polymer cutin which, depending on its chemical composition and structure, can have different biophysical properties. In this study, we introduce a new on-surface depolymerization method coupled to liquid extraction surface analysis (LESA) high-resolution mass spectrometry (HRMS) for a fast and spatially resolved chemical characterization of the cuticle of plant tissues. The method is composed of an on-surface saponification, followed by extraction with LESA using a chloroform-acetonitrile-water (49:49:2) mixture and direct HRMS detection. The method is also compared with LESA-HRMS without prior depolymerization for the analysis of the surface of the petals of Hibiscus richardsonii flowers, which have a ridged cuticle in the proximal region and a smooth cuticle in the distal region. We found that on-surface saponification is effective enough to depolymerize the cutin into its monomeric constituents thus allowing detection of compounds that were not otherwise accessible without a depolymerization step. The effect of the depolymerization procedure was more pronounced for the ridged/proximal cuticle, which is thicker and richer in epicuticular waxes compared with the cuticle in the smooth/distal region of the petal

    Analysing photonic structures in plants.

    Get PDF
    The outer layers of a range of plant tissues, including flower petals, leaves and fruits, exhibit an intriguing variation of microscopic structures. Some of these structures include ordered periodic multilayers and diffraction gratings that give rise to interesting optical appearances. The colour arising from such structures is generally brighter than pigment-based colour. Here, we describe the main types of photonic structures found in plants and discuss the experimental approaches that can be used to analyse them. These experimental approaches allow identification of the physical mechanisms producing structural colours with a high degree of confidence

    Direct Depolymerization Coupled to Liquid Extraction Surface Analysis-High-Resolution Mass Spectrometry for the Characterization of the Surface of Plant Tissues.

    Get PDF
    The cuticle, the outermost layer covering the epidermis of most aerial organs of land plants, can have a heterogeneous composition even on the surface of the same organ. The main cuticle component is the polymer cutin which, depending on its chemical composition and structure, can have different biophysical properties. In this study, we introduce a new on-surface depolymerization method coupled to liquid extraction surface analysis (LESA) high-resolution mass spectrometry (HRMS) for a fast and spatially resolved chemical characterization of the cuticle of plant tissues. The method is composed of an on-surface saponification, followed by extraction with LESA using a chloroform-acetonitrile-water (49:49:2) mixture and direct HRMS detection. The method is also compared with LESA-HRMS without prior depolymerization for the analysis of the surface of the petals of Hibiscus richardsonii flowers, which have a ridged cuticle in the proximal region and a smooth cuticle in the distal region. We found that on-surface saponification is effective enough to depolymerize the cutin into its monomeric constituents thus allowing detection of compounds that were not otherwise accessible without a depolymerization step. The effect of the depolymerization procedure was more pronounced for the ridged/proximal cuticle, which is thicker and richer in epicuticular waxes compared with the cuticle in the smooth/distal region of the petal.European Research Council (ERC consolidator grant 279405) the Herchel Smith fund the Gatsby Charitable Foundation BBSRC grant BB/P001157/

    Evaluation par test simplifié in vivo de la chimiosensibilité du Plasmodium falciparum à la chloroquine et à l'amodiaquine dans le Sud du Cameroun

    Get PDF
    La sensibilité in vivo du #Plasmodium falciparumaˋlachloroquineetaˋlamodiaquineaˋladosede25mg/kgperosentroisjoursaeˊteˊeˊvalueˊeparsixenque^teseffectueˊesen1989dansleSudOuestduCameroun.Lapreˊvalenceplasmodialechezleseˊcoliersestde75 à la chloroquine et à l'amodiaquine à la dose de 25 mg/kg per os en trois jours a été évaluée par six enquêtes effectuées en 1989 dans le Sud-Ouest du Cameroun. La prévalence plasmodiale chez les écoliers est de 75 %. #Plasmodium falciparum est présent dans 96 % des infections. Parmi 357 enfants traités à la chloroquine, 24 % sont porteurs de trophozoïtes au 3ème jour du traitement et 17 % au 7ème jour. Une résistance complète de type R III est observée dans 4 % des cas. Parmi les 55 enfants traités à l'amodiaquine, 13 % et 10 % sont trouvés porteurs de rares trophozoïtes à J3 ET J7. La signification de ces résultats est discutée. (Résumé d'auteur

    Ultrastructure and optics of the prism-like petal epidermal cells of Eschscholzia californica (California poppy).

    Get PDF
    The petals of Eschscholzia californica (California poppy) are robust, pliable and typically coloured intensely orange or yellow owing to the presence of carotenoid pigments; they are also highly reflective at certain angles, producing a silky effect. To understand the mechanisms behind colour enhancement and reflectivity in California poppy, which represents a model species among early-divergent eudicots, we explored the development, ultrastructure, pigment composition and optical properties of the petals using light microscopy and electron microscopy combined with both spectrophotometry and goniometry. The elongated petal epidermal cells each possess a densely thickened prism-like ridge that is composed primarily of cell wall. The surface ridges strongly focus incident light onto the pigments, which are located in plastids at the cell base. Our results indicate that this highly unusual, deeply ridged surface structure not only enhances the deep colour response in this desert species, but also results in strongly angle-dependent 'silky' reflectivity that is anisotropic and mostly directional
    corecore