3,863 research outputs found

    The Spectral Function for Finite Nuclei in the Local Density Approximation

    Get PDF
    The spectral function for finite nuclei is computed within the framework of the Local Density Approximation, starting from nuclear matter spectral functions obtained with a realistic nucleon-nucleon interaction. The spectral function is decomposed into a single-particle part and a ''correlated'' part; the latter is treated in the local density approximation. As an application momentum distributions, quasi-particle strengths and overlap functions for valence hole states, and the light-cone momentum distribution in finite nuclei are computed.Comment: 21 pages + 9 figures available upon request, RevTex, preprint KVI-108

    Neoclassical Theory of Elementary Charges with Spin of 1/2

    Full text link
    We advance here our neoclassical theory of elementary charges by integrating into it the concept of spin of 1/2. The developed spinorial version of our theory has many important features identical to those of the Dirac theory such as the gyromagnetic ratio, expressions for currents including the spin current, and antimatter states. In our theory the concepts of charge and anticharge relate naturally to their "spin" in its rest frame in two opposite directions. An important difference with the Dirac theory is that both the charge and anticharge energies are positive whereas their frequencies have opposite signs

    Orbital M1 versus E2 strength in deformed nuclei: A new energy weighted sum rule

    Get PDF
    Within the unified model of Bohr and Mottelson we derive the following linear energy weighted sum rule for low energy orbital 1+^+ excitations in even-even deformed nuclei S_{\rm LE}^{\rm lew} (M_1^{\rm orb}) \cong (6/5) \epsilon (B(E2; 0^+_1 \rightarrow 2_1^+ K=0)/Z e^2^2) \mu^2_N with B(E2) the E2 strength for the transition from the ground state to the first excited state in the ground state rotational band, the charge r.m.s. radius squared and ϵ\epsilon the binding energy per nucleon in the nuclear ground state. It is shown that this energy weighted sum rule is in good agreement with available experimental data. The sum rule is derived using a simple ansatz for the intrinsic ground state wave function that predicts also high energy 1+^+ strength at 2ω\hbar \omega carrying 50\% of the total m1m_1 moment of the orbital M1 operator.Comment: REVTEX (3.0), 9 pages, RU924

    Mechanisms for spin suppression and orbital enhancement in M1 transitions: Critical assessment

    Get PDF
    9 págs.; 3 figs.; 3 tabs.We discuss different nuclear structure properties that may lead to spin suppression in magnetic dipole excitations (as well as in Gamow-Teller transitions). We especially compare the triaxial and the axial asymptotic deformation limits and show that the summed B(M1) strength can be quite different in the two cases. A connection between triaxial deformation and spin suppression is established. It is known, however, that modern Hartree-Fock calculations yield axially symmetric solutions for several nuclei which were previously thought to be triaxial. We show that taking into account the effects of higher shells can lead to an enhanced orbital contribution to M1 excitations without affecting ground-state magnetic moments. © 1989 The American Physical Society.This work was supported by a NATO Collaborative Research Grant (0702/87) and by the Department of Energy DE-FG05-86ER40299. One of us (E.M.G.) is also indebted to DGICYT (Spain) for partial financial support under Contract No. PB8710311.Peer Reviewe

    Impact of ConcanavalinA affinity in the intracellular fate of Protein Corona on Glucosamine Au nanoparticles

    Get PDF
    Biological fate and toxicity of nanoparticles (NPs) are connected to the interaction between NPs and the protein corona (PC) spontaneously forming around NPs in biological matrixes. PC is a dynamic entity that confers biological identity to NPs. In this work, fluorescence cross-correlation spectroscopy (FCCS) is used to study the impact of specific interactions between the NP surface and proteins on the intracellular fate of PC. The stability of the PC formed around glucosamide-functionalized Au-NPs from ConcanavalinA (ConA) or Bovine Serum Albumin (BSA) is characterized by FCCS. The NPs show higher affinity for ConA and competitive assays show that ConA easily exchanges BSA. A549 cells are exposed to glucosamide-functionalized Au-NPs with preformed ConA and BSA PCs. Intracellularly the frequency of cross-correlation for Au NPs with ConA PC remains constant to a 70% value until 24 h while for BSA it decreases to a 15% during the same period. FCCS measurements in several locations in the cell point out a different level of aggregation for the NPs with either ConA or BSA PCs. Our results show that the affinity of NPs functionalized with a ligand with affinity for a specific protein in bulk is retained intracellularly influencing NP fate and translocation

    Properties of Nucleon Resonances by means of a Genetic Algorithm

    Get PDF
    We present an optimization scheme that employs a Genetic Algorithm (GA) to determine the properties of low-lying nucleon excitations within a realistic photo-pion production model based upon an effective Lagrangian. We show that with this modern optimization technique it is possible to reliably assess the parameters of the resonances and the associated error bars as well as to identify weaknesses in the models. To illustrate the problems the optimization process may encounter, we provide results obtained for the nucleon resonances Δ\Delta(1230) and Δ\Delta(1700). The former can be easily isolated and thus has been studied in depth, while the latter is not as well known experimentally.Comment: 12 pages, 10 figures, 3 tables. Minor correction

    Lattice dynamics and phonon softening in Ni-Mn-Al Heusler alloys

    Get PDF
    Inelastic and elastic neutron scattering have been used to study a single crystal of the Ni54_{54}Mn23_{23}Al23_{23} Heusler alloy over a broad temperature range. The paper reports the first experimental determination of the low-lying phonon dispersion curves for this alloy system. We find that the frequencies of the TA2_2 modes are relatively low. This branch exhibits an anomaly (dip) at a wave number ξ0=1/30.33\xi_{0} ={1/3}\approx 0.33, which softens with decreasing temperature. Associated with this anomalous dip at ξ0\xi_{0}, an elastic central peak scattering is also present. We have also observed satellites due to the magnetic ordering.Comment: 6 pages, 6 figures. Accepted for publication in the Physical Review

    Ginzburg-Landau theory of the zig-zag transition in quasi-one-dimensional classical Wigner crystals

    Full text link
    We present a mean-field description of the zig-zag phase transition of a quasi-one-dimensional system of strongly interacting particles, with interaction potential rner/λr^{-n}e^{-r/\lambda}, that are confined by a power-law potential (yαy^{\alpha}). The parameters of the resulting one-dimensional Ginzburg-Landau theory are determined analytically for different values of α\alpha and nn. Close to the transition point for the zig-zag phase transition, the scaling behavior of the order parameter is determined. For α=2\alpha=2 the zig-zag transition from a single to a double chain is of second order, while for α>2\alpha>2 the one chain configuration is always unstable and for α<2\alpha<2 the one chain ordered state becomes unstable at a certain critical density resulting in jumps of single particles out of the chain.Comment: 12 pages, 11 figure

    Quantum interference structures in trapped ion dynamics beyond the Lamb-Dicke and rotating wave approximations

    Full text link
    We apply wave packet methods to study an ion-trap system in the strong excitation regime imposing neither the rotating wave nor the Lamb-Dicke approximations. By this approach we show the existence of states with restricted phase space evolution, as a genuine consequence of quantum interference between wave packet fractions. A particular instance of such a state oscillates between maximal entanglement and pure disentanglement between the constitute subsystems. The characteristic crossover time is very rapid making them suitable for state preparations of EPR or Schrodinger cat states. Over longer time periods the dynamics of these states exhibits collapse-revival patterns with well resolved fractional revivals in autocorrelation, inversion and entanglement.Comment: 11 pages, 5 figures. Replaced with revised version. Phys. Rev. A 77, 053808 (2008
    corecore