323 research outputs found

    A provisional database for the silicon content of foods in the United Kingdom

    Full text link
    Si may play an important role in bone formation and connective tissue metabolism. Although biological interest in this element has recently increased, limited literature exists on the Si content of foods. To further our knowledge and understanding of the relationship between dietary Si and human health, a reliable food composition database, relevant for the UK population, is required. A total of 207 foods and beverages, commonly consumed in the UK, were analysed for Si content. Composite samples were analysed using inductively coupled plasma&ndash;optical emission spectrometry following microwave-assisted digestion with nitric acid and H2O2. The highest concentrations of Si were found in cereals and cereal products, especially less refined cereals and oat-based products. Fruit and vegetables were highly variable sources of Si with substantial amounts present in Kenyan beans, French beans, runner beans, spinach, dried fruit, bananas and red lentils, but undetectable amounts in tomatoes, oranges and onions. Of the beverages, beer, a macerated whole-grain cereal product, contained the greatest level of Si, whilst drinking water was a variable source with some mineral waters relatively high in Si. The present study provides a provisional database for the Si content of UK foods, which will allow the estimation of dietary intakes of Si in the UK population and investigation into the role of dietary Si in human health.<br /

    From theory to 'measurement' in complex interventions: methodological lessons from the development of an e-health normalisation instrument

    Get PDF
    &lt;b&gt;Background&lt;/b&gt; Although empirical and theoretical understanding of processes of implementation in health care is advancing, translation of theory into structured measures that capture the complex interplay between interventions, individuals and context remain limited. This paper aimed to (1) describe the process and outcome of a project to develop a theory-based instrument for measuring implementation processes relating to e-health interventions; and (2) identify key issues and methodological challenges for advancing work in this field.&lt;p&gt;&lt;/p&gt; &lt;b&gt;Methods&lt;/b&gt; A 30-item instrument (Technology Adoption Readiness Scale (TARS)) for measuring normalisation processes in the context of e-health service interventions was developed on the basis on Normalization Process Theory (NPT). NPT focuses on how new practices become routinely embedded within social contexts. The instrument was pre-tested in two health care settings in which e-health (electronic facilitation of healthcare decision-making and practice) was used by health care professionals.&lt;p&gt;&lt;/p&gt; &lt;b&gt;Results&lt;/b&gt; The developed instrument was pre-tested in two professional samples (N = 46; N = 231). Ratings of items representing normalisation 'processes' were significantly related to staff members' perceptions of whether or not e-health had become 'routine'. Key methodological challenges are discussed in relation to: translating multi-component theoretical constructs into simple questions; developing and choosing appropriate outcome measures; conducting multiple-stakeholder assessments; instrument and question framing; and more general issues for instrument development in practice contexts.&lt;p&gt;&lt;/p&gt; &lt;b&gt;Conclusions&lt;/b&gt; To develop theory-derived measures of implementation process for progressing research in this field, four key recommendations are made relating to (1) greater attention to underlying theoretical assumptions and extent of translation work required; (2) the need for appropriate but flexible approaches to outcomes measurement; (3) representation of multiple perspectives and collaborative nature of work; and (4) emphasis on generic measurement approaches that can be flexibly tailored to particular contexts of study

    Optimising the Diagnosis of Prostate Cancer in the Era of Multiparametric Magnetic Resonance Imaging : A Cost-effectiveness Analysis Based on the Prostate MR Imaging Study (PROMIS)

    Get PDF
    Background The current recommendation of using transrectal ultrasound-guided biopsy (TRUSB) to diagnose prostate cancer misses clinically significant (CS) cancers. More sensitive biopsies (eg, template prostate mapping biopsy [TPMB]) are too resource intensive for routine use, and there is little evidence on multiparametric magnetic resonance imaging (MPMRI). Objective To identify the most effective and cost-effective way of using these tests to detect CS prostate cancer. Design, setting, and participants Cost-effectiveness modelling of health outcomes and costs of men referred to secondary care with a suspicion of prostate cancer prior to any biopsy in the UK National Health Service using information from the diagnostic Prostate MR Imaging Study (PROMIS). Intervention Combinations of MPMRI, TRUSB, and TPMB, using different definitions and diagnostic cut-offs for CS cancer. Outcome measurements and statistical analysis Strategies that detect the most CS cancers given testing costs, and incremental cost-effectiveness ratios (ICERs) in quality-adjusted life years (QALYs) given long-term costs. Results and limitations The use of MPMRI first and then up to two MRI-targeted TRUSBs detects more CS cancers per pound spent than a strategy using TRUSB first (sensitivity = 0.95 [95% confidence interval {CI} 0.92–0.98] vs 0.91 [95% CI 0.86–0.94]) and is cost effective (ICER = £7,076 [€8350/QALY gained]). The limitations stem from the evidence base in the accuracy of MRI-targeted biopsy and the long-term outcomes of men with CS prostate cancer. Conclusions An MPMRI-first strategy is effective and cost effective for the diagnosis of CS prostate cancer. These findings are sensitive to the test costs, sensitivity of MRI-targeted TRUSB, and long-term outcomes of men with cancer, which warrant more empirical research. This analysis can inform the development of clinical guidelines. Patient summary We found that, under certain assumptions, the use of multiparametric magnetic resonance imaging first and then up to two transrectal ultrasound-guided biopsy is better than the current clinical standard and is good value for money. The use of multiparametric magnetic resonance imaging before transrectal ultrasound-guided biopsy can detect more clinically significant prostate cancer and be cost effective compared with the use of imaging post-biopsy
    corecore