134 research outputs found

    Novel Clinical Campylobacter jejuni Infection Models Based on Sensitization of Mice to Lipooligosaccharide, a Major Bacterial Factor Triggering Innate Immune Responses in Human Campylobacteriosis

    Get PDF
    Human Campylobacter jejuni infections inducing campylobacteriosis including post-infectious sequelae such as Guillain-Barré syndrome and reactive arthritis are rising worldwide and progress into a global burden of high socioeconomic impact. Intestinal immunopathology underlying campylobacteriosis is a classical response of the innate immune system characterized by the accumulation of neutrophils and macrophages which cause tissue destruction, barrier defects and malabsorption leading to bloody diarrhea. Clinical studies revealed that enteritis and post-infectious morbidities of human C. jejuni infections are strongly dependent on the structure of pathogenic lipooligosaccharides (LOS) triggering the innate immune system via Toll-like-receptor (TLR)-4 signaling. Compared to humans, mice display an approximately 10,000 times weaker TLR-4 response and a pronounced colonization resistance (CR) against C. jejuni maintained by the murine gut microbiota. In consequence, investigations of campylobacteriosis have been hampered by the lack of experimental animal models. We here summarize recent progress made in the development of murine C. jejuni infection models that are based on the abolishment of CR by modulating the murine gut microbiota and by sensitization of mice to LOS. These advances support the major role of LOS driven innate immunity in pathogenesis of campylobacteriosis including post-infectious autoimmune diseases and promote the preclinical evaluation of novel pharmaceutical strategies for prophylaxis and treatment

    Carvacrol ameliorates acute campylobacteriosis in a clinical murine infection model

    Get PDF
    Background: The prevalence of human infections with the zoonotic pathogen Campylobacter jejuni is rising worldwide. Therefore, the identification of compounds with potent anti-pathogenic and anti-inflammatory properties for future therapeutic and/or preventive application to combat campylobacteriosis is of importance for global health. Results of recent studies suggested carvacrol (4-isopropyl-2-methylphenol) as potential candidate molecule for the treatment of campylobacteriosis in humans and for the prevention of Campylobacter colonization in farm animals. Results: To address this in a clinical murine infection model of acute campylobacteriosis, secondary abiotic IL-10-/- mice were subjected to synthetic carvacrol via the drinking water starting 4 days before peroral C. jejuni challenge. Whereas at day 6 post-infection placebo treated mice suffered from acute enterocolitis, mice from the carvacrol cohort not only harbored two log orders of magnitude lower pathogen loads in their intestines, but also displayed significantly reduced disease symptoms. Alleviated campylobacteriosis following carvacrol application was accompanied by less distinct intestinal apoptosis and pro-inflammatory immune responses as well as by higher numbers of proliferating colonic epithelial cells. Remarkably, the inflammation-ameliorating effects of carvacrol treatment were not restricted to the intestinal tract, but could also be observed in extra-intestinal organs such as liver, kidneys and lungs and, strikingly, systemically as indicated by lower IFN-γ, TNF, MCP-1 and IL-6 serum concentrations in carvacrol versus placebo treated mice. Furthermore, carvacrol treatment was associated with less frequent translocation of viable C. jejuni originating from the intestines to extra-intestinal compartments. Conclusion: The lowered C. jejuni loads and alleviated symptoms observed in the here applied clinical murine model for human campylobacteriosis highlight the application of carvacrol as a promising novel option for both, the treatment of campylobacteriosis and hence, for prevention of post-infectious sequelae in humans, and for the reduction of C. jejuni colonization in the intestines of vertebrate lifestock animals

    Immunopathological properties of the Campylobacter jejuni flagellins and the adhesin CadF as assessed in a clinical murine infection model

    Get PDF
    Background: Campylobacter jejuni infections constitute serious threats to human health with increasing prevalences worldwide. Our knowledge regarding the molecular mechanisms underlying host-pathogen interactions is still limited. Our group has established a clinical C. jejuni infection model based on abiotic IL-10-/- mice mimicking key features of human campylobacteriosis. In order to further validate this model for unraveling pathogen-host interactions mounting in acute disease, we here surveyed the immunopathological features of the important C. jejuni virulence factors FlaA and FlaB and the major adhesin CadF (Campylobacter adhesin to fibronectin), which play a role in bacterial motility, protein secretion and adhesion, respectively. Methods and results: Therefore, abiotic IL-10-/- mice were perorally infected with C. jejuni strain 81-176 (WT) or with its isogenic flaA/B (ΔflaA/B) or cadF (ΔcadF) deletion mutants. Cultural analyses revealed that WT and ΔcadF but not ΔflaA/B bacteria stably colonized the stomach, duodenum and ileum, whereas all three strains were present in the colon at comparably high loads on day 6 post-infection. Remarkably, despite high colonic colonization densities, murine infection with the ΔflaA/B strain did not result in overt campylobacteriosis, whereas mice infected with ΔcadF or WT were suffering from acute enterocolitis at day 6 post-infection. These symptoms coincided with pronounced pro-inflammatory immune responses, not only in the intestinal tract, but also in other organs such as the liver and kidneys and were accompanied with systemic inflammatory responses as indicated by increased serum MCP-1 concentrations following C. jejuni ΔcadF or WT, but not ΔflaA/B strain infection. Conclusion: For the first time, our observations revealed that the C. jejuni flagellins A/B, but not adhesion mediated by CadF, are essential for inducing murine campylobacteriosis. Furthermore, the secondary abiotic IL-10-/- infection model has been proven suitable not only for detailed investigations of immunological aspects of campylobacteriosis, but also for differential analyses of the roles of distinct C. jejuni virulence factors in induction and progression of disease

    Toll-Like Receptor-4 Is Involved in Mediating Intestinal and Extra-Intestinal Inflammation in Campylobacter coli-Infected Secondary Abiotic IL-10−/− Mice

    Get PDF
    Human Campylobacter infections are emerging worldwide and constitute significant health burdens. We recently showed that the immunopathological sequelae in Campylobacter jejuni-infected mice were due to Toll-like receptor (TLR)-4 dependent immune responses induced by bacterial lipooligosaccharide (LOS). Information regarding the molecular mechanisms underlying Campylobacter coli-host interactions are scarce, however. Therefore, we analyzed C. coli-induced campylobacteriosis in secondary abiotic IL-10-/- mice with and without TLR4. Mice were infected perorally with a human C. coli isolate or with a murine commensal Escherichia coli as apathogenic, non-invasive control. Independent from TLR4, C. coli and E. coli stably colonized the gastrointestinal tract, but only C. coli induced clinical signs of campylobacteriosis. TLR4-/- IL-10-/- mice, however, displayed less frequently fecal blood and less distinct histopathological and apoptotic sequelae in the colon versus IL-10-/- counterparts on day 28 following C. coli infection. Furthermore, C. coli-induced colonic immune cell responses were less pronounced in TLR4-/- IL-10-/- as compared to IL-10-/- mice and accompanied by lower pro-inflammatory mediator concentrations in the intestines and the liver of the former versus the latter. In conclusion, our study provides evidence that TLR4 is involved in mediating C. coli-LOS-induced immune responses in intestinal and extra-intestinal compartments during murine campylobacteriosis

    Inflammatory Immune Responses and Gut Microbiota Changes Following Campylobacter coli Infection of IL-10 -/- Mice with Chronic Colitis

    Get PDF
    Human infections with the food-borne enteropathogens Campylobacter are progressively rising. Recent evidence revealed that pre-existing intestinal inflammation facilitates enteropathogenic infection subsequently exacerbating the underlying disease. Given that only little is known about C. coli-host interactions and particularly during intestinal inflammation, the aim of the present study was to survey gastrointestinal colonization properties, gut microbiota changes and pro-inflammatory sequelae upon peroral C. coli-infection of IL-10-/- mice with chronic colitis. C. coli colonized the gastrointestinal tract of mice with varying efficiencies until day 28 post-infection and induced macroscopic and microscopic inflammatory changes as indicated by shorter colonic lengths, more distinct histopathological changes in the colonic mucosa and higher numbers of apoptotic colonic epithelial cells when compared to mock-infected controls. Furthermore, not only colonic innate and adaptive immune cell responses, but also enhanced systemic TNF-α secretion could be observed following C. coli as opposed to mock challenge. Notably, C. coli induced intestinal inflammatory sequelae were accompanied with gut microbiota shifts towards higher commensal enterobacterial loads in the infected gut lumen. Moreover, the pathogen translocated from the intestinal tract to extra-intestinal tissue sites in some cases, but never to systemic compartments. Hence, C. coli accelerates inflammatory immune responses in IL-10-/- mice with chronic colitis

    miR-125a-5p regulates the sialyltransferase ST3GAL1 in murine model of human intestinal campylobacteriosis

    Get PDF
    Background Zoonotic microorganisms are increasingly impacting human health worldwide. Due to the development of the global population, humans and animals live in shared and progressively crowded ecosystems, which enhances the risk of zoonoses. Although Campylobacter species are among the most important bacterial zoonotic agents worldwide, the molecular mechanisms of many host and pathogen factors involved in colonisation and infection are poorly understood. Campylobacter jejuni colonises the crypts of the human colon and causes acute inflammatory processes. The mucus and associated proteins play a central host-protective role in this process. The aim of this study was to explore the regulation of specific glycosyltransferase genes relevant to differential mucin-type O-glycosylation that could influence host colonisation and infection by C. jejuni. Results Since microRNAs are known to be important regulators of the mammalian host cell response to bacterial infections, we focussed on the role of miR-125a-5p in C. jejuni infection. Combining in vitro and in vivo approaches, we show that miR-125a-5p regulates the expression of the sialyltransferase ST3GAL1 in an infection-dependent manner. The protein ST3GAL1 shows markedly increased intestinal levels in infected mice, with enhanced distribution in the mucosal epithelial layer in contrast to naïve mice. Conclusion From our previous studies and the data presented here, we conclude that miR-125a-5p and the previously reported miR-615-3p are involved in regulating the glycosylation patterns of relevant host cell response proteins during C. jejuni infection. The miRNA-dependent modulation of mucin-type O-glycosylation could be part of the mucosal immune response, but also a pathogen-driven modification that allows colonisation and infection of the mammalian host

    Vitamin D in Acute Campylobacteriosis-Results From an Intervention Study Applying a Clinical Campylobacter jejuni Induced Enterocolitis Model

    Get PDF
    Human Campylobacter infections are progressively rising and of high socioeconomic impact. In the present preclinical intervention study we investigated anti-pathogenic, immuno-modulatory, and intestinal epithelial barrier preserving properties of vitamin D applying an acute campylobacteriosis model. Therefore, secondary abiotic IL-10-/- mice were perorally treated with synthetic 25-OH-cholecalciferol starting 4 days before peroral Campylobacter jejuni infection. Whereas, 25-OH-cholecalciferol application did not affect gastrointestinal pathogen loads, 25-OH-cholecalciferol treated mice suffered less frequently from diarrhea in the midst of infection as compared to placebo control mice. Moreover, 25-OH-cholecalciferol application dampened C. jejuni induced apoptotic cell responses in colonic epithelia and promoted cell-regenerative measures. At day 6 post-infection, 25-OH-cholecalciferol treated mice displayed lower numbers of colonic innate and adaptive immune cell populations as compared to placebo controls that were accompanied by lower intestinal concentrations of pro-inflammatory mediators including IL-6, MCP1, and IFN-γ. Remarkably, as compared to placebo application synthetic 25-OH-cholecalciferol treatment of C. jejuni infected mice resulted in lower cumulative translocation rates of viable pathogens from the inflamed intestines to extra-intestinal including systemic compartments such as the kidneys and spleen, respectively, which was accompanied by less compromised colonic epithelial barrier function in the 25-OH-cholecalciferol as compared to the placebo cohort. In conclusion, our preclinical intervention study provides evidence that peroral synthetic 25-OH-cholecalciferol application exerts inflammation-dampening effects during acute campylobacteriosis

    Bioactive compound profiling of olive fruit: the contribution of genotype

    Get PDF
    The health, therapeutic, and organoleptic characteristics of olive oil depend on functional bioactive compounds, such as phenols, tocopherols, squalene, and sterols. Genotype plays a key role in the diversity and concentration of secondary compounds peculiar to olive. In this study, the most important bioactive compounds of olive fruit were studied in numerous international olive cultivars during two consecutive seasons. A large variability was measured for each studied metabolite in all 61 olive cultivars. Total phenol content varied on a scale of 1–10 (3831–39,252 mg kg1) in the studied cultivars. Squalene values fluctuated over an even wider range (1–15), with values of 274 to 4351 mg kg1. Total sterols ranged from 119 to 969 mg kg1, and total tocopherols varied from 135 to 579 mg kg1 in fruit pulp. In the present study, the linkage among the most important quality traits highlighted the scarcity of cultivars with high content of at least three traits together. This work provided sound information on the fruit metabolite profile of a wide range of cultivars, which will facilitate the studies on the genomic regulation of plant metabolites and development of new olive genotypes through genomics-assisted breeding.EEA San JuanFil: Mousavi, Soraya. National Research Council. Institute of Biosciences and Bioresources; ItaliaFil: Stanzione, Vitale. National Research Council. Institute for Agricultural and Forest Systems of the Mediterranean; ItaliaFil: Mariotti, Roberto. National Research Council. Institute of Biosciences and Bioresources; ItaliaFil: Mastio, Valerio.Instituto Nacional de Tecnología Agropecuaria (INTA). Estación Experimental Agropecuaria San Juan; Argentina.Fil: Mastio, Valerio. Consejo Nacional de Investigaciones Científicas y Técnicas; ArgentinaFil: Azariadis, Aristotelis. Mediterranean Agronomic Institute of Chania. Department of Horticultural Genetics and Biotechnology; GreciaFil: Passeri, Valentina. National Research Council. Institute for Agricultural and Forest Systems of the Mediterranean; ItaliaFil: Valeri, Maria Cristina. National Research Council. Institute of Biosciences and Bioresources; ItaliaFil: Baldoni, Luciana. National Research Council. Institute of Biosciences and Bioresources; ItaliaFil: Bufacchi, Marina. National Research Council. Institute for Agricultural and Forest Systems of the Mediterranean; Itali
    • …
    corecore