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Abstract: Human infections with the food-borne enteropathogens Campylobacter are progressively rising.
Recent evidence revealed that pre-existing intestinal inflammation facilitates enteropathogenic infection
subsequently exacerbating the underlying disease. Given that only little is known about C. coli–host
interactions and particularly during intestinal inflammation, the aim of the present study was to survey
gastrointestinal colonization properties, gut microbiota changes and pro-inflammatory sequelae upon
peroral C. coli-infection of IL-10-/- mice with chronic colitis. C. coli colonized the gastrointestinal tract of
mice with varying efficiencies until day 28 post-infection and induced macroscopic and microscopic
inflammatory changes as indicated by shorter colonic lengths, more distinct histopathological changes
in the colonic mucosa and higher numbers of apoptotic colonic epithelial cells when compared to
mock-infected controls. Furthermore, not only colonic innate and adaptive immune cell responses,
but also enhanced systemic TNF-α secretion could be observed following C. coli as opposed to mock
challenge. Notably, C. coli induced intestinal inflammatory sequelae were accompanied with gut
microbiota shifts towards higher commensal enterobacterial loads in the infected gut lumen. Moreover,
the pathogen translocated from the intestinal tract to extra-intestinal tissue sites in some cases, but never
to systemic compartments. Hence, C. coli accelerates inflammatory immune responses in IL-10-/- mice
with chronic colitis.

Keywords: Campylobacter coli; murine chronic colitis; host-pathogen interaction; aged IL-10-/- mice;
intestinal immunopathology; bacterial colonization; gut microbiota changes; dysbiosis; enterobacterial
overgrowth; intestinal and systemic immune responses

1. Introduction

Human infections with the enteropathogens Campylobacter such as C. jejuni and C. coli are
emerging worldwide [1]. The Gram-negative bacteria can be found in surface water and reside as
commensals in the intestinal tract of many warm-blooded vertebrate species including livestock [2].
Whereas C. jejuni and C. coli share several reservoirs, the former can be isolated at high frequencies
from poultry such as chicken and turkey and the latter from pig and sheep [2,3]. Following ingestion
of contaminated water, milk or meat products, infected humans exhibit symptoms of varying severities
after an incubation period of 2 to 5 days [4,5]. Whereas some patients complain about rather mild
discomfort, others present with symptoms of acute campylobacteriosis such as fever, abdominal pain
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and watery or bloody and inflammatory diarrhea with mucous discharge [5,6]. Campylobacter-induced
histopathological changes within inflamed gut tissue samples are characterized by mucosal and
submucosal infiltrates consisting of innate and adaptive immune cells, crypt abscesses, focal ulcerations
and erosions [7,8]. Given that C. jejuni and C. coli may induce similar disease, one cannot conclude from
the clinical conditions or microscopic inflammatory sequelae to the underlying etiologic agent [2,9].
Infected individuals are usually treated symptomatically; in severe cases affecting patients with
immunocompromising comorbidities including chronic inflammatory bowel disease (IBD) such as
ulcerative colitis and Crohn’s disease, however, antimicrobial therapy is indicated [5,6]. The symptoms
resolve without residues within two weeks in the majority of cases. In rare instances, however,
post-infectious complications such as Guillain-Barré syndrome and reactive arthritis and inflammatory
illnesses affecting the gastrointestinal tract, such as irritable bowel syndrome, coeliac disease, and IBD,
might occur [6,10–15].

Recent evidence revealed that pre-existing intestinal inflammation facilitates infection with
enteropathogens including C. jejuni, which might subsequently exacerbate the underlying disease [16–19].
Since human campylobacteriosis cases have been more frequently attributed to C. jejuni than to C. coli
infections [9], research regarding the molecular mechanisms underlying C. coli-host mechanisms has
been rather neglected during the past decades. In fact, data regarding the outcome of C. coli infection
in pre-existing human intestinal inflammation as well as in experimental gut inflammation models
are scarce.

This prompted us to apply a murine chronic colitis model by using aged conventional interleukin
(IL)-10 deficient (IL-10-/-) mice. With progressive aging, IL-10-/- mice develop chronic colitis due to the
antigenic stimuli derived from their commensal gut microbiota starting approximately by the age of
2 to 6 months depending on the housing conditions and the murine gut microbiota composition [20].
Therefore, in the present study, aged IL-10-/- mice were subjected to peroral C. coli infection and (i) the
intestinal colonization efficacies of the pathogen, (ii) the gut microbiota changes, (iii) the macroscopic
and microscopic inflammatory conditions, (iv) the intestinal as well as systemic pro-inflammatory
immune responses and (v) the bacterial translocation frequencies were surveyed following oral
pathogen challenge.

2. Results

2.1. Gastrointestinal Campylobacter coli Colonization Following Peroral Infection of Aged Conventional
IL-10-/- mice

Conventionally colonized IL-10-/- mice 10 to 12 months of age were perorally infected with 108

colony forming units (CFU) of a C. coli patient isolate on days 0 and 1 by gavage or received a mock
inoculum. In order to assess intestinal colonization properties of the pathogen, we quantitated fecal C.
coli loads over time post-infection (p.i.). As early as 24 h after the latest C. coli challenge, mice harbored
median pathogen loads of approximately 108 CFU per g feces, with individual bacterial cell counts
ranging from approximately 104 to 1010 CFU per g (Figure 1A). C. coli burdens assessed from day 21
until day 28 p.i. were approximately 1.5 orders of magnitude lower as compared to those determined
between days 5 and 9 p.i. (p < 0.05–0.001; Figure 1A). At the end of the observation period on day 28
p.i., 11.1% of mice did not harbor the pathogen in their intestines anymore (Figure 1A). We further
assessed C. coli colonization in distinct compartments of the gastrointestinal tract upon necropsy and
isolated viable pathogens from stomach, duodenum, ileum and colon in 48.1%, 18.5%, 33.3% and 88.9%
of cases, respectively (Figure 1B). Hence, C. coli was able to colonize the gastrointestinal tract of aged
conventional IL-10-/- mice following peroral infection but with varying efficiencies.
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Figure 1. Gastrointestinal Campylobacter coli colonization following peroral infection of aged 
conventional IL-10-/- mice. Ten- to 12-month-old conventional IL-10-/- mice were perorally challenged 
with C. coli on day (d) 0 and d1 (circles) or received vehicle (mock controls; diamonds). (A) The 
intestinal colonization properties were surveyed over time post-infection by cultural analyses of fecal 
samples taken at distinct time points (expressed as colony forming units per g; CFU/g). (B) Upon 
necropsy on day 28 post-infection, C. coli loads were determined in distinct compartments of the 
gastrointestinal tract. Medians (black bars), levels of significance (p-values) assessed by the Kruskal–
Wallis test and Dunn’s post-correction and the Mann–Whitney U test as well as numbers of culture-
positive mice out of the total number of analyzed animals (in parentheses) are indicated. Data were 
pooled from four independent experiments. 

2.2. Changes in Gut Microbiota Composition Following Peroral C. coli Infection of Aged Conventional IL-10-

/- mice 

We further performed a comprehensive survey of potential gut microbiota changes following C. 
coli infection. Molecular 16S rRNA based analyses quantitating the most abundant intestinal bacterial 
groups and genera (Figure 2) revealed that 28 days following C. coli as opposed to mock application, 
approximately 2.0 and 0.5 log orders of magnitude higher gene numbers of enterobacteria and 
Clostridium leptum, respectively, could be determined in fecal samples as compared to day 0 (p < 0.05; 
Figure 2B, I). Hence, C. coli infection of aged conventional IL-10-/- mice resulted in shifts towards 
higher commensal intestinal burdens of enterobacteria and Clostridium leptum.  

Figure 1. Gastrointestinal Campylobacter coli colonization following peroral infection of aged conventional
IL-10-/- mice. Ten- to 12-month-old conventional IL-10-/- mice were perorally challenged with C. coli on
day (d) 0 and d1 (circles) or received vehicle (mock controls; diamonds). (A) The intestinal colonization
properties were surveyed over time post-infection by cultural analyses of fecal samples taken at distinct
time points (expressed as colony forming units per g; CFU/g). (B) Upon necropsy on day 28 post-infection,
C. coli loads were determined in distinct compartments of the gastrointestinal tract. Medians (black
bars), levels of significance (p-values) assessed by the Kruskal–Wallis test and Dunn’s post-correction
and the Mann–Whitney U test as well as numbers of culture-positive mice out of the total number of
analyzed animals (in parentheses) are indicated. Data were pooled from four independent experiments.

2.2. Changes in Gut Microbiota Composition Following Peroral C. coli Infection of Aged Conventional
IL-10-/- mice

We further performed a comprehensive survey of potential gut microbiota changes following
C. coli infection. Molecular 16S rRNA based analyses quantitating the most abundant intestinal
bacterial groups and genera (Figure 2) revealed that 28 days following C. coli as opposed to mock
application, approximately 2.0 and 0.5 log orders of magnitude higher gene numbers of enterobacteria
and Clostridium leptum, respectively, could be determined in fecal samples as compared to day 0
(p < 0.05; Figure 2B,I). Hence, C. coli infection of aged conventional IL-10-/- mice resulted in shifts
towards higher commensal intestinal burdens of enterobacteria and Clostridium leptum.
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Figure 2. Changes in gut microbiota composition following peroral C. coli infection of aged 
conventional IL-10-/- mice. Aged IL-10-/- mice were perorally challenged with C. coli (circles) on day 
(d) 0 and d1 or received vehicle (mock controls; diamonds). Immediately before the first C. coli 
infection (d0) and upon necropsy (i.e., d28 post-infection), the fecal microbiota composition was 
surveyed by culture-independent 16S rRNA based methods quantitating the most abundant intestinal 
bacterial groups and genera as indicated (A-I) and expressed as copies per ng DNA. Medians (black 
bars), levels of significance (p-values) assessed by the Kruskal–Wallis test and Dunn’s post-correction 
and the numbers of 16S rRNA-positive mice out of the total number of analyzed animals (in 
parentheses) are indicated. Data were pooled from four independent experiments. 

Figure 2. Changes in gut microbiota composition following peroral C. coli infection of aged conventional
IL-10-/- mice. Aged IL-10-/- mice were perorally challenged with C. coli (circles) on day (d) 0 and
d1 or received vehicle (mock controls; diamonds). Immediately before the first C. coli infection
(d0) and upon necropsy (i.e., d28 post-infection), the fecal microbiota composition was surveyed by
culture-independent 16S rRNA based methods quantitating the most abundant intestinal bacterial
groups and genera as indicated (A-I) and expressed as copies per ng DNA. Medians (black bars),
levels of significance (p-values) assessed by the Kruskal–Wallis test and Dunn’s post-correction and the
numbers of 16S rRNA-positive mice out of the total number of analyzed animals (in parentheses) are
indicated. Data were pooled from four independent experiments.
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2.3. Clinical Conditions Over Time Following Peroral C. coli Infection of Aged Conventional IL-10-/- mice

We further surveyed the clinical conditions of aged IL-10-/- mice before and after C. coli infection
applying an established clinical scoring system [21]. Before C. coli or mock application, only 3.6% and
5.3% of mice presented any gross signs of colitis, respectively (Figure 3A,B). When assessing clinical
conditions over time p.i., only single mice displayed microscopic abundance of fecal blood, but did
not suffer from diarrhea. At the end of the observation period, 18.5% of mice from the C. coli cohort
and 15.6% of the mock counterparts exhibited rather mild gross clinical signs of colitis. Hence, C. coli
infection did not worsen clinical conditions in aged conventional IL-10-/- mice.
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Figure 3. Clinical conditions over time following peroral C. coli infection of aged conventional IL-10-/-

mice. Aged IL-10-/- mice were perorally challenged with C. coli (black symbols) on day (d) 0 and
d1 or received vehicle (mock controls; white symbols). Clinical conditions of mice were surveyed
over time post-infection applying a standardized clinical scoring system assessing (A,B) overall gross
clinical conditions, (C,D) abundance of fecal blood and (E,F) stool consistency. Absolute clinical scores
(A,C,E) and score-positive animals out of the total number of analyzed mice (in %; B,D,F) are indicated.
Data were pooled from four independent experiments.
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2.4. Macroscopic and Microscopic Inflammatory Sequelae of Peroral C. coli Infection in Aged Conventional
IL-10-/- mice

Given that intestinal inflammation is associated with a significant shortening of the affected
intestinal compartment [22,23], we measured large and small intestinal lengths upon necropsy. In C. coli
infected mice, the absolute lengths of the colon were lower as compared to mock counterparts (p < 0.05;
Figure 4A), whereas small intestinal lengths were comparable at day 28 p.i. (n.s.; Figure 4B).
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We next quantitatively assessed C. coli induced histopathological changes in hematoxylin and 
eosin (H&E) stained colonic paraffin sections by using an established histopathological scoring 
system [24]. Whereas mock treated mice displayed median histopathological scores of 1 indicative 
for rather minimal hyperplastic changes of the large intestinal mucosa [24], C. coli infection resulted 
in mild hyperplasia of the colonic mucosa and sometimes of the submucosa and mild goblet cell loss 
as indicated by median scores of 2 (p < 0.05; Figure 5A). 

Since apoptosis is considered as reliable marker for the grading of intestinal inflammation [23], 
we further assessed the numbers of apoptotic colonic epithelial cells by in situ 
immunohistochemistry. On day 28 post-challenge, numbers of cleaved caspase3+ cells were higher in 
colonic epithelia of mice from the C. coli as compared to the mock cohort (p < 0.05; Figure 5B), whereas 
numbers of Ki67+ colonic epithelial cells indicative for cell proliferation and regeneration were 
comparable (n.s.; Figure 5C). Hence, C. coli infection of aged conventional IL-10-/- mice with pre-
existing chronic colitis resulted in both, macroscopic and microscopic inflammatory sequelae. 

Figure 4. Intestinal lengths following peroral C. coli infection of aged conventional IL-10-/- mice.
Aged IL-10-/- mice were perorally challenged with C. coli (black circles) on days 0 and 1 or received
vehicle (mock controls; white diamonds). Upon necropsy (i.e., day 28 post-infection), the absolute
lengths of the (A) colon and (B) small intestine were measured with the ruler (in %). Medians (black
bars), levels of significance (p-values) assessed by the Mann–Whitney U test (A) and Student’s t test
(B) and numbers of analyzed mice (in parentheses) are indicated. Data were pooled from four
independent experiments.

We next quantitatively assessed C. coli induced histopathological changes in hematoxylin and eosin
(H&E) stained colonic paraffin sections by using an established histopathological scoring system [24].
Whereas mock treated mice displayed median histopathological scores of 1 indicative for rather
minimal hyperplastic changes of the large intestinal mucosa [24], C. coli infection resulted in mild
hyperplasia of the colonic mucosa and sometimes of the submucosa and mild goblet cell loss as
indicated by median scores of 2 (p < 0.05; Figure 5A).

Since apoptosis is considered as reliable marker for the grading of intestinal inflammation [23],
we further assessed the numbers of apoptotic colonic epithelial cells by in situ immunohistochemistry.
On day 28 post-challenge, numbers of cleaved caspase3+ cells were higher in colonic epithelia of mice
from the C. coli as compared to the mock cohort (p < 0.05; Figure 5B), whereas numbers of Ki67+ colonic
epithelial cells indicative for cell proliferation and regeneration were comparable (n.s.; Figure 5C).
Hence, C. coli infection of aged conventional IL-10-/- mice with pre-existing chronic colitis resulted in
both, macroscopic and microscopic inflammatory sequelae.

2.5. Colonic Immune Cell Responses Following Peroral C. coli Infection of Aged Conventional IL-10-/- mice

We further investigated innate and adaptive immune cell responses upon C. coli infection of
aged IL-10-/- mice, again applying quantitative in situ immunohistochemistry. At day 28 following
C. coli infection, higher numbers of innate immune cell populations such as F4/80+ macrophages and
monocytes could be determined in the colonic mucosa and lamina propria as compared to mock
controls (p < 0.05; Figure 6A), which also held true for distinct adaptive immune cell subsets such as
FOXP3+ regulatory T cells and B220+ B lymphocytes (p < 0.01 and p < 0.05, respectively; Figure 6C,D),
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whereas CD3+ T lymphocyte numbers were comparable between both cohorts (n.s.; Figure 6B). Hence,
C. coli infection of conventional IL-10-/- mice with chronic colitis resulted in distinct innate and adaptive
immune responses in the colon.Pathogens 2020, 9, x FOR PEER REVIEW 7 of 16 
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Figure 5. Microscopic inflammatory responses in the colon following peroral C. coli infection of aged
conventional IL-10-/- mice. Aged IL-10-/- mice were perorally challenged with C. coli (black circles)
on days 0 and 1 or received vehicle (mock controls; white diamonds). Upon necropsy (i.e., day 28
post-infection), (A) colonic histopathological changes were quantitatively assessed in hematoxylin
and eosin (H&E) stained paraffin sections applying a histopathological scoring system (see methods).
Additionally, the average numbers of colonic epithelial (B) apoptotic (cleaved caspase 3+; Casp3+) and
(C) proliferating (Ki67+) cells were assessed microscopically from six high power fields (HPF, 400 x
magnification) per animal in immunohistochemically stained large intestinal paraffin sections. Medians
(black bars), levels of significance (p-values; assessed by the Mann–Whitney U test and Student’s
t test) and numbers of analyzed mice (in parentheses) are indicated. Data were pooled from four
independent experiments.

2.6. Colonic and Systemic TNF-α Secretion Following Peroral C. coli Infection of Aged Conventional IL-10-/-

Mice with Chronic Colitis

We next assessed both, large intestinal and systemic tumor necrosis factor-α (TNF-α) secretion in
IL-10-/- mice with chronic colitis following C. coli infection. TNF-α concentrations were comparable
in colonic ex vivo biopsies derived from C. coli and mock challenged mice (n.s.; Figure 7A), whereas,
remarkably, TNF-α concentrations were higher in serum samples taken 28 days following C. coli infection
as compared to mock controls (p < 0.001; Figure 7B). Hence, C. coli infection of aged conventional
IL-10-/- mice with chronic colitis was associated with pronounced systemic TNF-α secretion.

2.7. Bacterial Translocation Following Peroral C. coli Infection of Aged Conventional IL-10-/- Mice with
Chronic Colitis

We finally addressed whether viable C. coli bacteria translocated from the infected intestinal tract
to extra-intestinal including systemic tissue sites. In fact, C. coli could be isolated from ex vivo biopsies
in single cases, namely, in 3.7% of mesenteric lymph nodes (MLN) and kidneys and in 14.8% of lungs
taken on day 28 p.i. (Figure 8). Notably, C. coli could not be detected in any systemic compartments as
indicated by culture-negative splenic and cardiac blood samples. Hence, C. coli translocated in single
cases from the intestinal tract to extra-intestinal, but not to systemic compartments upon infection of
IL-10-/- mice with pre-existing chronic colitis.
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Figure 6. Colonic immune cell responses following peroral C. coli infection of aged conventional IL-10-/-

mice. IL-10-/- mice with chronic colitis were perorally challenged with C. coli (black circles) on days 0
and 1 or received vehicle (mock controls; white diamonds). Upon necropsy (i.e., day 28 post-infection),
the average numbers of colonic (A) macrophages and monocytes (F4/80+), (B) T lymphocytes (CD3+),
(C) regulatory T cells (FOXP3+) and (D) B lymphocytes (B220+) were assessed microscopically from
six high power fields (HPF, 400 x magnification) per animal in immunohistochemically stained large
intestinal paraffin sections. Medians (black bars), levels of significance (p-values) assessed by the
Student’s t test and Mann–Whitney U test and numbers of analyzed mice (in parentheses) are indicated.
Data were pooled from four independent experiments.
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Figure 7. Colonic and systemic TNF-α secretion following peroral C. coli infection of IL-10-/- mice with
chronic colitis. IL-10-/- mice with pre-existing chronic colitis were perorally challenged with C. coli (black
circles) on days 0 and 1 or received vehicle (mock controls; white diamonds). Upon necropsy (i.e., day
28 post-infection), TNF-α concentrations were measured in (A) colonic ex vivo biopsies and in (B)
serum samples. Medians (black bars), levels of significance (p-values) assessed by the Mann–Whitney
U test and numbers of analyzed mice (in parentheses) are indicated. Data were pooled from four
independent experiments.
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Aged IL-10-/- mice were perorally challenged with C. coli (black bars) on days 0 and 1 or received 
vehicle (mock controls; white bars). Upon necropsy (i.e., day 28 post-infection), C. coli were isolated 
from distinct compartments as indicated. The bacterial translocation rates (in %) were calculated by 

Figure 8. Bacterial translocation following peroral C. coli infection of IL-10-/- mice with chronic colitis.
Aged IL-10-/- mice were perorally challenged with C. coli (black bars) on days 0 and 1 or received vehicle
(mock controls; white bars). Upon necropsy (i.e., day 28 post-infection), C. coli were isolated from
distinct compartments as indicated. The bacterial translocation rates (in %) were calculated by dividing
the numbers of culture-positive samples by the total numbers of analyzed mice (in parentheses).
Data were pooled from four independent experiments.

3. Discussion

Previous studies revealed that patients suffering from chronic IBD are at increased risk for
super-infections with enteropathogens [18,25–27]. Among these enteropathogens, Campylobacter
have been frequently isolated from the intestines of super-infected patients suffering from ulcerative
colitis [16–18,27]. Of note, Campylobacter super-infections worsened the outcome of the underlying
chronic ulcerative colitis [19]. Despite the worldwide emerging prevalence of human campylobacteriosis
our knowledge regarding the molecular mechanism of Campylobacter-host interactions—and of C. coli
in particular—is very limited. This prompted us in the present study to perorally challenge aged
conventional IL-10-/- mice with a pre-existing chronic colitis (serving as experimental model for
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ulcerative colitis in humans [20]) with C. coli and to subsequently survey the intestinal colonization
properties of the pathogen, the clinical outcome of the underlying chronic colitis until four weeks
post-infection and potential C. coli induced shifts in the murine gut microbiota composition in addition
to bacterial translocation frequencies.

Following peroral challenge, C. coli colonized the intestinal tract of the aged IL-10-/- mice with
varying efficiencies: whereas 11.1% of mice were C. coli-negative at the end of the observation period,
the remaining animals harbored the pathogen with median loads of approximately 108 CFU per g
feces but with relatively high inter-individual differences in pathogen loads ranging from 102 to 109

C. coli cells per g on day 28 p.i. In our previous study applying 3-month-old wildtype mice without
intestinal inflammation, also varying C. coli colonization efficiencies could be observed until 3 weeks
following peroral pathogen challenge [28]. In case of C. jejuni as opposed to C. coli, several bacterial
factors including flagella, pili, adhesins and invasins are known to date, which contribute to successful
establishment within the intestinal tract of the vertebrate host [29,30].

Four weeks following C. coli infection, IL-10-/- mice with chronic colitis did neither display more
frequent nor more severe clinical signs of intestinal inflammation as compared to mock-infected
counterparts. However, in C. coli infected mice, slightly shorter colonic lengths could be observed
as compared to mock control animals indicative of more severe intestinal inflammation resulting
in shrinkage of the affected intestinal compartment in the former. This also held true for C. coli
infected conventional wildtype mice as shown in our previous study [28]. Inflammatory sequelae
of infection could also be observed at microscopic levels given that upon C. coli as compared to
mock challenge moderate versus mild histopathological changes within the colonic mucosa could
be detected that were accompanied by higher numbers of apoptotic colonic epithelial cells in the
former versus the latter. In support, human microbiota associated IL-10-/- mice without chronic colitis
displayed more pronounced colonic apoptosis three weeks following peroral C. coli as compared to
mock application [31]. In the human microbiota associated IL-10-/- mice, the gut microbiota had been
depleted as early as 3 weeks post-partum (i.e., upon weaning) in order to avoid colitis development
due to the antigenic stimuli derived from the commensal gut microbiota [31]. These secondary abiotic
IL-10-/- mice were re-associated with a human microbiota by oral fecal microbiota transplantation and
one week later perorally challenged with C. coli for unraveling the triangle relationship between the
pathogen, the human gut microbiota and the vertebrate host immunity. Of note, the establishment
of the human gut microbiota within the IL-10-/- mice per se did not result in intestinal inflammation.
Hence, all observed inflammatory responses were due to C. coli challenge [31].

The here observed C. coli induced inflammatory changes in the large intestinal tract were
accompanied by enhanced innate and adaptive immune cell responses as indicated by higher numbers
of macrophages and monocytes as well as of regulatory T cells and B lymphocytes in the colonic
mucosa and lamina propria. Comparable immune cell responses upon C. coli challenge have been
described in human microbiota associated IL-10-/- mice without pre-existing colitis by us recently [31].
Unexpectedly, pro-inflammatory TNF-α secretion was comparable in the large intestinal tract 28
days following C. coli as compared to mock challenge of IL-10-/- mice with chronic colitis, whereas
systemically (i.e., in serum samples), higher TNF-α concentration could be assessed in the former
versus the latter. We therefore addressed whether viable C. coli might have translocated from the large
intestinal lumen through the leaky gut epithelial barrier to systemic compartments but were unable to
isolate any viable pathogenic cells from spleen or blood. One needs to take into consideration, however,
that soluble cell wall constituents of C. coli such as lipooligosaccharide (LOS) might have gained access
to the circulation and have been responsible for the observed systemic TNF-α secretion. Of note, also
in our previous study applying human microbiota associated IL-10-/- mice without pre-existing colitis,
C. coli induced systemic TNF-α secretion, whereas splenic and blood samples were all culture-negative
for C. coli [31]. Nevertheless, in our actual study, C. coli could be cultured from extra-intestinal ex vivo
biopsies such as kidneys and lungs in single cases.
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Given pathogen–commensal bacterial interactions and potential gut microbiota shifts during
inflammatory conditions [32], we further performed a comprehensive survey of the gut microbiota
compositions during C. coli infection of aged IL-10-/- mice. Within 28 following C. coli as opposed
to mock challenge, slightly higher (i.e., 0.5 log) fecal loads of Clostridium leptum could be observed,
whereas the increase in commensal enterobacteria was even more pronounced (i.e., approximately
2.0 log). In line, acute and chronic inflammatory conditions of the murine large and small intestines
have been shown to be accompanied with a marked intestinal dysbiosis characterized by increases
in commensal Gram-negative bacteria including enterobacteria. The enterobacterial overgrowth of
the inflamed intestinal lumen further perpetuates the underlying inflammatory morbidities due to
Toll-like receptor-4 (TLR-4) dependent signaling of the bacterial lipopolysaccharides (LPS) and LOS
mounting in a vicious pro-inflammatory cycle [22,33–37]. In line, commensal enterobacteria such as
E. coli were shown to accumulate in the inflamed intestines of IBD patients, subsequently translocating
via microlesions and ulcerations and thereby worsening the immunopathological scenario [38,39].
Hence, the observed increases in intestinal enterobacteria during C. coli infection may be considered as
a by-standing parameter for the pathogen induced inflammation.

4. Materials and Methods

4.1. Ethics Statement

All described animal experiments were conducted according to the European Guidelines for animal
welfare (2010/63/EU) after being approved by the commission for animal experiments (“Landesamt für
Gesundheit und Soziales”, LaGeSo, Berlin, registration number G0247/16). The clinical conditions of
mice were assessed twice daily.

4.2. Mice

IL-10-/- mice (C57BL/6J background) were bred and raised under specific pathogen-free conditions
in the identical unit of the Forschungseinrichtungen für Experimentelle Medizin (Charité–University
Medicine Berlin). Under standard conditions (i.e., 22–24 ◦C temperature, 55 ± 15 % humidity, 12h light
/12h dark cycle), mice were maintained in autoclaved cages covered by filter tops within an experimental
semi-barrier (accessible only with a lab coat, overshoes, caps, face masks, and sterile gloves). Mice had
free access to both, autoclaved chow (food pellets: ssniff R/M-H, V1534-300, Sniff, Soest, Germany) and
tap water (ad libitum). Ten-to-12-month-old, age-and-sex-matched IL-10-/- mice with a conventional
gut microbiota were included into the infection studies.

4.3. C. coli Infection, Colonisation and Translocation

The used C. coli strain was initially isolated from a diseased patient with bloody diarrhea (kindly
provided by Dr. Torsten Semmler, Robert Koch Institute Berlin, Berlin, Germany). On days 0 and 1,
mice were perorally infected with 108 CFU of C. coli by gavage in a total volume of 0.3 mL phosphate
buffered saline (PBS; Thermo Fisher Scientific, Waltham, MA, USA) as described earlier [28,31], whereas
the mock control cohort received vehicle (i.e., PBS) by gavage.

Intestinal colonization properties were assessed by quantitating C. coli loads in fecal samples
taken over time p.i. and additionally, in luminal samples derived from distinct compartments of
the gastrointestinal tract such as the stomach, duodenum, ileum and colon on the day of necropsy
(i.e., day 28 p.i.) as reported previously [28,31]. Briefly, serial dilutions of respective samples were
plated onto Columbia agar plates with 5 % sheep blood and Karmali agar plates (both from Oxoid,
Wesel, Germany) and incubated under microaerophilic conditions in a jar for 48 h at 37 ◦C. To survey
for bacterial translocation, ex vivo biopsies were collected from the MLN, liver, kidneys, lungs and
spleen, homogenized in sterile PBS and plated onto respective culture plates. Furthermore, C. coli were
isolated from cardiac blood as described previously [31]. The C. coli detection limit was approximately
≈ 100 CFU per g.
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4.4. Analyses of the Gut Microbiota Composition

For a comprehensive survey of changes in the microbiota composition p.i., fecal samples were
subjected to molecular gut microbiota analyses. Therefore, the total genomic DNA was extracted
from the fecal samples as described previously [34]. In brief, the DNA was quantitated by using
Quant-iT PicoGreen reagent (Invitrogen, Carlsbad, CA, USA) and the concentration adjusted to 1 ng
per µL. The main bacterial groups abundant in the commensal gut microbiota of mice were assessed
by quantitative real-time polymerase chain reaction (qRT-PCR) with species-, genera- or group-specific
16S rRNA gene primers (Tib MolBiol, Berlin, Germany) as described previously [40,41].

4.5. Clinical Conditions

Immediately before and after C. coli application, the clinical conditions of mice were surveyed
applying a standardized, cumulative clinical score (maximum 12 points), assessing the gross clinical
aspect (0: normal; 1: ruffled fur; 2: less locomotion; 3: isolation; 4: severely compromised locomotion,
pre-final aspect), the occurrence of blood in feces (0: no blood; 2: microscopic detection of blood by the
Guajac method using Haemoccult, Beckman Coulter/PCD, Germany; 4: macroscopic blood visible),
and diarrhea (0: formed feces; 2: pasty feces; 4: liquid feces), as described previously [21]. The relative
rates of respective parameters were calculated by dividing the number of score-positive cases by the
total number of analyzed mice.

4.6. Sampling Process

On the day of necropsy (i.e., day 28 p.i.), mice were sacrificed by CO2 asphyxiation. Ex vivo
biopsies were taken under sterile conditions from liver, kidneys, spleen, lungs, MLN and colon,
in addition to luminal samples from stomach, duodenum, ileum and colon. Blood was collected
by heart puncture. Colonic samples were taken from each mouse in parallel for microbiological,
immunohistopathological and immunological analyses. The absolute lengths of the large and small
intestines were measured with a ruler.

4.7. Histopathological Scoring

The histopathological changes in the large intestines were quantitatively assessed in colonic ex
vivo biopsies that were immediately fixed in 5 % formalin and embedded in paraffin. Therefore, a
standardized histopathological scoring system was used as described elsewhere [24]. In brief, score 1:
minimal inflammatory cell infiltrates in the mucosa with intact epithelium. Score 2: mild inflammatory
cell infiltrates in the mucosa and submucosa with mild hyperplasia and mild goblet cell loss. Score 3:
moderate inflammatory cell infiltrates in the mucosa with moderate goblet cell loss. Score 4: marked
inflammatory cell infiltration into in the mucosa and submucosa with marked goblet cell loss, multiple
crypt abscesses and crypt loss.

4.8. Immunohistochemistry

In situ immunohistochemical analyses were carried out in formalin fixed and paraffin embedded
colonic ex vivo biopsies as stated earlier [36,42–44]. For detection of apoptotic and proliferating colonic
epithelial cells, macrophages/monocytes, T lymphocytes, regulatory T cells, and B lymphocytes, 5 µm
colonic paraffin sections were stained with primary antibodies directed against cleaved caspase-3
(Asp175, Cell Signaling, Beverly, MA, USA, 1:200), Ki67 (TEC3, Dako, Glostrup, Denmark, 1:100), F4/80
(# 14-4801, clone BM8, eBioscience, San Diego, CA, USA, 1:50), CD3 (#N1580, Dako, 1:10), FOXP3
(clone FJK-165, #14-5773, eBioscience, 1:100) and B220 (No. 14-0452-81, eBioscience; 1:200), respectively.
Positive-stained cells were assessed by light microscopy, and the average number within at least six high
power fields (HPF, 0.287 mm2, 400 times magnification) was recorded by an independent investigator.
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4.9. Pro-Inflammatory Cytokine Measurements in Large Intestinal and Systemic Compartments

Colonic ex vivo biopsies were cut longitudinally, washed in PBS, and strips of approximately 1 cm2

colonic tissue were placed in 24-flat-bottom well culture plates (Thermo Fisher Scientific, Waltham,
MA, USA) containing 500 µL serum-free RPMI 1640 medium (Thermo Fisher Scientific, Waltham,
MA, USA) supplemented with penicillin (100 U/mL) and streptomycin (100 µg/mL; Biochrom, Berlin,
Germany). After incubation for 18 h at 37 ◦C, colonic culture supernatants as well as serum samples
were tested for TNF-α by the Mouse Inflammation Cytometric Bead Array (CBA; BD Biosciences,
Heidelberg, Germany) on a BD FACSCanto II flow cytometer (BD Biosciences, Heidelberg, Germany).

4.10. Statistical Analysis

Medians and levels of significance were calculated applying the Student’s t test and Mann–Whitney
U test (GraphPad Prism v8, USA) for pairwise comparisons of normally distributed and not
normally distributed data, respectively. For multiple comparisons, the one-sided ANOVA with
Tukey post-correction was assigned for normally distributed data and the Kruskal–Wallis test with
Dunn’s post-correction for not normally distributed data. Two-sided probability (p) values ≤ 0.05 were
considered significant. Data were pooled from four independent experiments.

5. Conclusions

For the first time, we here show that C. coli induces intestinal and systemic inflammatory responses
in conventional aged IL-10-/- mice with pre-existing chronic colitis. Further studies are needed to
unravel the molecular mechanism underlying C. coli-host interactions in more detail. Given the
importance of the gut luminal milieu and its metabolomic features that are determined by the
gut microbiota composition, in contributing to “intestinal health” [45], we are currently assessing
the immunomodulatory (i.e., anti-oxidative, anti-inflammatory) properties of distinct probiotic and
prebiotic compounds as therapeutic and/or preventive strategies to combat Campylobacter induced
inflammatory responses in the vertebrate host with intestinal inflammatory comorbidities.
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n.s. not significant
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