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Human Campylobacter infections are progressively rising and of high socioeconomic

impact. In the present preclinical intervention study we investigated anti-pathogenic,

immuno-modulatory, and intestinal epithelial barrier preserving properties of vitamin

D applying an acute campylobacteriosis model. Therefore, secondary abiotic

IL-10−/− mice were perorally treated with synthetic 25-OH-cholecalciferol starting 4

days before peroral Campylobacter jejuni infection. Whereas, 25-OH-cholecalciferol

application did not affect gastrointestinal pathogen loads, 25-OH-cholecalciferol treated

mice suffered less frequently from diarrhea in the midst of infection as compared to

placebo control mice. Moreover, 25-OH-cholecalciferol application dampened C. jejuni

induced apoptotic cell responses in colonic epithelia and promoted cell-regenerative

measures. At day 6 post-infection, 25-OH-cholecalciferol treated mice displayed

lower numbers of colonic innate and adaptive immune cell populations as compared

to placebo controls that were accompanied by lower intestinal concentrations of

pro-inflammatory mediators including IL-6, MCP1, and IFN-γ. Remarkably, as compared

to placebo application synthetic 25-OH-cholecalciferol treatment of C. jejuni infected

mice resulted in lower cumulative translocation rates of viable pathogens from the

inflamed intestines to extra-intestinal including systemic compartments such as the

kidneys and spleen, respectively, which was accompanied by less compromised

colonic epithelial barrier function in the 25-OH-cholecalciferol as compared to the

placebo cohort. In conclusion, our preclinical intervention study provides evidence

that peroral synthetic 25-OH-cholecalciferol application exerts inflammation-dampening

effects during acute campylobacteriosis.
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INTRODUCTION

Campylobacter jejuni constitute major infectious bacterial
agents of zoonotic enteric morbidities with increasing
prevalences worldwide (1). Humans become infected via
the food chain by consumption of raw or undercooked meat
derived from contaminated livestock animals or by ingestion of
C. jejuni containing surface water (2–4). Infected individuals
present with symptoms of varying degree depending on the
virulence of the acquired bacterial strain on one side and the
host immune status on the other (1, 5–7). Some patients display
rather mild symptoms including watery diarrhea, whereas
others develop acute campylobacteriosis (8, 9). These severely
compromised individuals complain about abdominal cramps,
fever, and inflammatory bloody diarrhea (8, 9). During infection
intestinal tissues are destroyed by innate immune responses and
display profound histopathological inflammatory changes such
as ulcerations, crypt abscesses, and increased numbers of innate
and adaptive immune cells in the colonic mucosa and lamina
propria (5, 8, 10, 11). The vast majority of human infections
are usually self-limiting and treated (if at all) symptomatically.
Only severely compromised patients with immuno-suppressive
comorbidities, for instance, require hospitalization and receive
antimicrobial treatment (6, 8, 9). In rare cases, however, post-
infectious sequelae such as Guillain-Barré syndrome, Miller
Fisher syndrome, Reiter’s syndrome, and reactive arthritis might
arise with a latency of weeks to months (8, 9, 12).

Despite the progressively increasing prevalences of human
campylobacteriosis, cellular, and molecular events that are
involved in disease development are not yet fully understood.
However, previous clinical studies revealed that in humans
acute C. jejuni induced disease courses and post-infectious
sequelae such as Guillain-Barré syndrome are triggered by the
pathogenic surface molecule lipooligosaccharide (LOS) causing
hyper-activation of the innate immune system in the sialylated
form (13). For quite a long time in vivo studies have been
hampered by the scarcity of appropriate animal models. This
is mainly because the gastrointestinal microbiota of mice
mediates a strong colconization resistance to C. jejuni and
mice are per se about 10,000-fold more resistant to LOS and
lipopolysaccharide (LPS) as compared to humans (14). Our
group has recently shown that secondary abiotic IL-10−/−

mice in which the gut microbiota had been depleted by
broad-spectrum antibiotic treatment can not only be effectively
colonized by the pathogen upon peroral infection, but also
develop key features of acute campylobacteriosis such as wasting
and bloody diarrhea within 1 week (15). One major reason
for these severe immunopathological responses mounting in
acute ulcerative enterocolitis is the absence of colonization
resistance and the lack of interleukin-10 (IL-10) providing
murine resistance to C. jejuni LOS (16, 17). In consequence, C.

Abbreviations: CBA, Cytometric Bead Array; CFU, colony-forming units; HPF,
High power fields; IFN, interferon; IL, interleukin; LOS, Lipo-oligosaccharide;
LPS, Lipo-polysaccharide; MCP-1, monocyte chemoattractant protein 1; MLN,
mesenteric lymph nodes; PBS, phosphate buffered saline; p.i., post-infection; PLC,
Placebo; Rt, Transmural electrical resistance; SPF, specific pathogen free; Th, T
helper cell; TLR, toll-like receptor; TNF, tumor necrosis factor; Treg, regulatory
T cells; UV, ultraviolet; VDR, vitamin D receptor; VitD, Vitamin D.

jejuni infected IL-10−/− mice display pronounced LOS induced
and Toll-like receptor-4 (TLR-4) dependent innate and adaptive
immune responses that are not restricted to the intestinal tract,
but can also be observed in extra-intestinal including systemic
compartments (15, 18–25).

Vitamin D has primarily been known for its regulatory
properties in bone metabolism due to the tight control of calcium
reabsortion in the intestinal tract and in bone remodeling (26).
After exposure to ultraviolet (UV) B light the steroid hormone is
produced in the skin from 7-dehydroxy-cholesterol followed by
hydroxylation steps in the liver and the kidneys to the biologically
active forms 25-hydroxy-vitamin D and 1,25-dihydroxy-vitamin
D, respectively (27). After ingestion of food or supplements,
circulating 25-hydroxy-vitamin D can be utilized by many
cells including immune cells and intestinal intraepithelial
cells expressing the 1α-hydroxylase enzyme CYP27B, whereas
24-hydroxylase CYP24A exerts counter-regulatory properties
subsequently providing local 1,25-dihydroxy-vitamin D sources
in a well-balanced fashion (27).

The identification of the vitamin D receptor (VDR) on
peripheral blood mononuclear cells in the 1980s first pointed
to immune-related functions of vitamin D (28, 29). In fact,
vitamin D has been shown to be involved in modulating both,
innate and adaptive immune responses (30–33) and to exert anti-
inflammatory effects (34). Furthermore, several reports underline
the anti-microbial properties of vitamin D (33). For instance,
vitamin D could effectively inhibit the growth of Gram-positive
bacterial strains such as Staphylococcus aureus, Streptococcus
pyogenes, and Streptococcus mutans, but also of Gram-negative
species including Klebsiella pneumoniae and Escherichia coli (35–
37). In addition, the production of antimicrobial peptides such
as cathelicidin and defensins are stimulated by vitamin D (38–
40). Both, immune-modulatory and antimicrobial effects might
be responsible for the beneficial effects of exogenous vitamin D
observed in infectious morbidities caused by Helicobacter pylori
(41) and in respiratory tract infections (42). Moreover, vitamin D
has been shown to be involved in maintenance of the intestinal
epithelial barrier integrity (43).

This prompted us in our present preclinical intervention
study to investigate potential pathogen-lowering, immuno-
modulatory, intestinal epithelial barrier preserving and hence,
disease-alleviating effects of synthetic 25-OH-cholecalciferol
applying a clincial model of acute campylobacterosis.

MATERIALS AND METHODS

Ethics Statement
All animal experiments were conducted in accordance with the
European Guidelines for animal welfare (2010/63/EU) following
approval by the commission for animal experiments headed by
the “Landesamt für Gesundheit und Soziales” (LaGeSo, Berlin,
registration numbers G0172/16 and G0247/16). Twice a day
clinical conditions of mice were assessed.

Generation of Secondary Abiotic Mice
Female and male IL-10−/− mice (all in C57BL/6j background)
were bred and reared under specific pathogen free (SPF)
conditions in the same unit of the Forschungseinrichtungen
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für Experimentelle Medizin (FEM, Charité–University Medicine
Berlin). Three to five mice were maintained in one cage including
filter tops within an experimental semi-barrier (accessible only
with lab coat, overshoes, caps, and sterile gloves) under standard
conditions (22–24◦C room temperature, 55 ± 15% humidity,
12 h light/12 dark cycle) and had free access to autoclaved
standard chow (food pellets: ssniff R/M-H, V1534-300, Sniff,
Soest, Germany).

In order to assure stable gastrointestinal C. jejuni colonization
and to override physiological colonization resistance (44),
microbiota-depleted (i.e., secondary abiotic) mice were generated
(44, 45). In brief, immediately post-weaning 3-week old
mice were subjected to a 10-week course of broad-spectrum
antibiotic treatment by adding ampicillin plus sulbactam (1 g/L;
Ratiopharm, Germany), vancomycin (500 mg/L; Cell Pharm,
Germany), ciprofloxacin (200 mg/L; Bayer Vital, Germany),
imipenem (250 mg/L; MSD, Germany) and metronidazole (1
g/L; Fresenius, Germany) to the autoclaved drinking water
(ad libitum) as described elsewhere (45). To assure antibiotic
washout, the antibiotic cocktail was withdrawn 4 days prior
infection and thus immediately before start of the vitamin
D treatment.

Vitamin D Treatment
Vitamin D treatment started 4 days before C. jejuni infection.
Therefore, synthetic 25-OH-cholecalciferol (purchased from
Sigma-Aldrich, München, Germany) was dissolved in Tween 80
(0.2% v/v) and administered to mice via the autoclaved tap water
(ad libitum). Considering a body weight of ∼25 g per mouse
and a daily drinking volume of ∼5mL, the final concentration
of the synthetic 25-OH-cholecalciferol solution was 2.5µg/mL
resulting in a daily treatment dosage of 500µg per kg body weight
(equivalent to 20,000 IU per kg) (46). Hence, the applied daily
vitaminD dose was far beyond the toxic doses defined for rodents
(i.e., 42 mg/kg/day) (47, 48) and humans (i.e., 150 mg/kg/day)
(49). Age and sex matched placebo (PLC) control mice received
vehicle (i.e., Tween 80) via the drinking water (ad libitum).

C. jejuni Infection, Gastrointestinal
Colonization, and Translocation
For infection, a stock solution of C. jejuni 81-176 strain that
had been stored at −80◦C was thawed, aliquots streaked onto
karmali agar (Oxoid, Wesel, Germany) and incubated in a
microaerophilic atmosphere at 37◦C for 48 h. Immediately before
peroral infection of mice, bacteria were harvested in sterile PBS
(Oxoid) to a final inoculum of 109 bacterial cells. Mice (3 months
of age) were perorally infected on two consecutive days (i.e.,
days 0 and 1). Animals were continuously maintained in a sterile
environment (autoclaved food and drinking water) and handled
under strict aseptic conditions to prevent from contaminations.

In order to assess gastrointestinal colonization and
translocation, C. jejuni were quantitatively assessed in fecal
samples over time post-infection (p.i.) and furthermore,
in luminal samples derived from distinct parts of the
gastrointestinal tract (i.e., from the stomach, duodenum,
ileum, and colon) and in organ homogenates at day 6 p.i. by
culture as stated elsewhere (44, 50). The detection limit of viable

pathogens was ≈100 CFU per g (CFU/g). To assess C. jejuni
bacteremia, thioglycollate enrichment broths (BD Bioscience,
Germany) were inoculated with ∼200 µL cardiac blood of
individual mice, incubated for 7 days at 37◦C, and streaked onto
respective media for further identification as described (44).

Clinical Conditions
Before and after C. jejuni infection the clinical conditions of mice
were assessed on a daily basis by using a standardized cumulative
clinical score (maximum 12 points), addressing the clinical
aspect/wasting (0: normal; 1: ruffled fur; 2: less locomotion; 3:
isolation; 4: severely compromised locomotion, pre-final aspect),
the abundance of blood in feces (0: no blood; 2: microscopic
detection of blood by the Guajac method using Haemoccult,
Beckman Coulter/PCD, Germany; 4: macroscopic blood visible),
and diarrhea (0: formed feces; 2: pasty feces; 4: liquid feces) as
described earlier (19).

Sampling Procedures
At day 6 p.i., mice were sacrificed by isofluran inhalation (Abbott,
Germany). Luminal gastrointestinal samples (from stomach,
duodenum, ileum, and colon) and ex vivo biopsies from colon,
ileum,mesenteric lymph nodes (MLN), spleen, liver, kidneys, and
lungs were taken under sterile conditions. For serum cytokine
measurements cardiac blood was taken. Colonic and extra-
intestinal samples were collected from each mouse in parallel for
microbiological, immunohistopathological, and immunological
analyses. The absolute colonic and small intestinal lengths were
measured with a ruler (in cm).

Immunohistochemistry
In situ immunohistochemical analyses were performed in colonic
ex vivo biopsies that had been immediately fixed in 5% formalin
and embedded in paraffin as described earlier (51–54). In
brief, in order to detect apoptotic epithelial cells, proliferation
epithelial cells, macrophages/monocytes, T lymphocytes, and
regulatory T cells (Tregs), 5µm thin paraffin sections of ex
vivo biopsies were stained with primary antibodies directed
against cleaved caspase 3 (Asp175, Cell Signaling, Beverly, MA,
USA, 1:200), Ki67 (TEC3, Dako, Denmark, 1:100), F4/80 (# 14-
4801, clone BM8, eBioscience, San Diego, CA, USA, 1:50), CD3
(#N1580, Dako, 1:10), and FOXP3 (clone FJK-165, #14-5773,
eBioscience, 1:100), respectively. Positively stained cells were
then examined by light microscopy (magnification 100× and
400×), and for each mouse the average number of respective
positively stained cells was determined within at least six high
power fields (HPF, 0.287 mm2, 400×magnification) by a blinded
independent investigator.

Inflammatory Mediator Detection in
Supernatants of Intestinal and
Extra-Intestinal ex vivo Biopsies
Colonic ex vivo biopsies were cut longitudinally, washed in
phosphate buffered saline (PBS; Gibco, Life Technologies, UK),
and strips of ∼1 cm2 tissue and ex vivo biopsies derived from
MLN (3–4 lymph nodes), liver, and spleen (one half) were
placed in 24-flat-bottom well-culture plates (Nunc, Germany)
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containing 500 µL serum-free RPMI 1640 medium (Gibco, life
technologies, UK) supplemented with penicillin (100 U/mL)
and streptomycin (100µg/mL; PAA Laboratories, Germany).
After 18 h at 37◦C, respective culture supernatants as well as
serum samples were tested for IL-6, monocyte chemoattractant
protein 1 (MCP-1), tumor necrosis factor (TNF), and interferon-
γ (IFN-γ) by the Mouse Inflammation Cytometric Bead Assay
(CBA; BD Biosciences, Germany) on a BD FACSCanto II
flow cytometer (BD Biosciences). Systemic pro-inflammatory
cytokine concentrations were measured in serum samples.

Electrophysiological Measurements
Distal colonic ex vivo biopsies were mounted unstripped
in Ussing chambers (0.049 cm2 area). Transmural electrical
resistance (Rt) was recorded under voltage clamp conditions
by an automatic clamp device (CVC6, Fiebig Hard and
Software, Berlin, Germany) at 37◦C over 1 h. The bathing
solution was composed of NaCl (113.6 mmol/L), NaHCO3 (21.0
mmol/L), KCl (5.4 mmol/L), Na2HPO4 (2.4 mmol/L), MgCl2
(1.2 mmol/L), CaCl2 (1.2 mmol/L), NaH2PO4 (0.6 mmol/L),
D(+)-glucose (10.0 mmol/L), D(+)-mannose (10.0 mmol/L),
beta-hydroxybutyric acid (0.5 mmol/L), and L-glutamine (2.5
mmol/L) equilibrated with carbogen gas (pH 7.4).

Statistical Analysis
Medians and levels of significance were determined using
Mann-Whitney test (GraphPad Prism v7, USA) for pairwise
comparisons of not normally distributed data, and using the
one-sided ANOVA with Tukey post-correction or the Kruskal-
Wallis test with Dunn’s post-correction for multiple comparisons
as indicated. Two-sided probability (p) values ≤ 0.05 were
considered significant. Experiments were performed in a blinded
fashion and reproduced three times.

RESULTS

Intestinal Pathogen Loads Over Time
Following Vitamin D Treatment of C. jejuni
Infected Mice With Acute Enterocolitis
Secondary abiotic IL-10−/− mice were subjected to synthetic
25-OH-cholecalciferol treatment via the drinking water starting
4 days before C. jejuni infection. On two consecutive days,
namely days 0 and 1, mice were then perorally challenged with
109 viable pathogens by gavage. Daily cultural analyses of fecal
samples revealed that 25-OH-cholecalciferol application did not
affect pathogenic intestinal colonization properties as indicated
by stable median fecal C. jejuni loads of 109 CFU/g over time
p.i. that did not differ between both cohorts at respective time
points (n.s.; Figure S1). Upon necropsy, luminal gastrointestinal
C. jejuni densities did not differ between 25-OH-cholecalciferol
and placebo treated mice as determined in stomach, duodenum,
ileum and colon at day 6 post-infection (n.s.; Figure 1).
Hence, synthetic 25-OH-cholecalciferol treatment did not affect
gastrointestinal C. jejuni loads.

FIGURE 1 | Gastrointestinal C. jejuni loads following vitamin D treatment of

infected mice. Secondary abiotic IL-10−/− mice were treated with synthetic

25-OH-cholecalciferol (vitamin D, VitD, open circles) or placebo (PLC, closed

circles) via the drinking water starting 4 days before peroral C. jejuni 81-176

strain infection on days 0 and 1. At necropsy (i.e., day 6 post-infection), luminal

C. jejuni loads were quantitatively assessed from each mouse in distinct

gastrointestinal compartments as indicated by culture and expressed in colony

forming units per g (CFU/g). Medians (black bars) and numbers of analyzed

animals (in parentheses) are indicated. Data were pooled from four

independent experiments.

Comprehensive Survey of Clinical
Conditions Over Time Following Vitamin D
Treatment of C. jejuni Infected Mice With
Acute Enterocolitis
Within 6 days following C. jejuni infection mice from
either cohort developed comparably severe symptoms of acute
enterocolitis as daily quantitated applying a standardized
cumulative clinical scoring system (Figure S2) assessing wasting
symptoms, abundance of fecal blood, and the severity of diarrhea.
Whereas overall pathogen-induced clinical symptoms were
comparable between the two cohorts over time (n.s.; Figure S2),
cumulate relative frequencies of diarrhea were lower in 25-OH-
cholecalciferol treated mice as compared to placebo controls as
early as 24 h following the latest infection (i.e., day 2 p.i.) until 4
p.i. (Figure 2). Hence, synthetic 25-OH-cholecalciferol treatment
results in less frequent C. jejuni induced diarrhea in the midst
of infection.

Macroscopic and Microscopic
Inflammatory Sequelae Following Vitamin
D Treatment of C. jejuni Infected Mice With
Acute Enterocolitis
Given that intestinal inflammation is association with a
significant shortening of the affected part of the intestinal tract
(15, 45), we measured the lengths of both, the small and
large intestines upon necropsy. In fact, C. jejuni infection was
accompanied with shorter colons of placebo as well as of 25-OH-
cholecalciferol treated mice (p< 0.001; Figure S3A), whereas the
small intestinal lengths were virtually unaffected at day 6 p.i. (n.s.;
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FIGURE 2 | Diarrhea frequencies over time following vitamin D treatment of C. jejuni infected mice. Secondary abiotic IL-10−/− mice were treated with synthetic

25-OH-cholecalciferol (vitamin D, VitD, white bars) or placebo (PLC, black bars) via the drinking water starting 4 days before peroral C. jejuni 81-176 strain infection on

days 0 and 1. Occurrence of diarrhea was assessed in each mouse from day 0 until day 6 post-infection as indicated applying a standardized clinical scoring system

(see Materials and Methods). Bars indicate the cumulative frequencies of diarrhea (in %). Numbers of diarrheal mice out of the total number of analyzed animals are

given in parentheses. Data were pooled from four independent experiments.

Figure S3B). Hence, synthetic 25-OH-cholecalciferol treatment
does not ameliorate C. jejuni induced macroscopic disease.

Since apoptosis is regarded a reliable parameter for the
grading of intestinal inflammation (44), we further quantitatively
assessed caspase3+ apoptotic epithelial cells in large intestinal
ex vivo biopsies applying in situ immunohistochemistry. At
day 6 p.i., C. jejuni infected mice exhibited multifold increased
numbers of apoptotic cells in their colonic epithelia (p <

0.001), that were, however, more than 60% lower in 25-OH-
cholecalciferol as compared to placebo treated mice (p <

0.05; Figure 3A, Figure S4A). Conversely, numbers of Ki67+

colonic epithelial cells indicative for cell proliferation and
regeneration increased upon C. jejuni infection (p < 0.001),
but more distinctly following 25-OH-cholecalciferol as compared
to placebo treatment (p < 0.05; Figure 3B, Figure S4B).
Hence, synthetic 25-OH-cholecalciferol treatment dampens C.
jejuni induced apoptotic cell responses and promotes cell
regenerative measures counteracting intestinal cell damage upon
pathogenic exposure.

Intestinal Immune Cell Responses
Following Vitamin D Treatment of C. jejuni
Infected Mice With Acute Enterocolitis
We further quantitatively surveyed both, innate and adaptive
immune cell responses in the large intestinal tract following
synthetic 25-OH-cholecalciferol treatment of C. jejuni infected
mice by immunohistochemical staining of colonic paraffin
sections. As early as 6 days upon C. jejuni infection, numbers
of F4/80+ innate immune cell subsets including macrophages
and monocytes had increased in the large intestinal mucosa
and lamina propria (p < 0.001), but less distinctly in 25-OH-
cholecalciferol as compared to placebo challenged mice (p
< 0.01; Figure 4A, Figure S4C). Similarly, C. jejuni induced
increases in adaptive immune cells such as CD3+ lymphocytes,
were less pronounced in the 25-OH-cholecalciferol vs. placebo
cohort at day 6 p.i. (p < 0.05, VitD vs. PLC; Figure 4B,
Figure S4D). Interestingly, numbers of FOXP3+ regulatory
T cells (Treg) were slightly higher following vitamin D as
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FIGURE 3 | Colonic epithelial cell apoptosis and cell proliferation/regeneration following vitamin D treatment of C. jejuni infected mice. Secondary abiotic IL-10−/−

mice were treated with synthetic 25-OH-cholecalciferol (vitamin D, VitD, open circles) or placebo (PLC, closed circles) via the drinking water starting 4 days before

peroral C. jejuni 81-176 strain infection on days 0 and 1. At necropsy (i.e., day 6 post-infection), the average numbers of colonic epithelial (A) apoptotic (Casp3+) and

(B) proliferating (Ki67+) cells were assessed microscopically from six high power fields (HPF, 400× magnification) per animal in immunohistochemically stained colonic

paraffin sections. Uninfected and untreated mice (none, open diamonds) served as negative control animals. Medians (black bars), levels of significance (p-values)

assessed by the Kruskal-Wallis test and Dunn’s post-correction or the one-sided ANOVA test with Tukey post-correction and numbers of analyzed animals (in

parentheses) are indicated. Data were pooled from four independent experiments.

compared to placebo treated C. jejuni infected mice (p < 0.01;
Figure 4C, Figure S4E). Hence, synthetic 25-OH-cholecalciferol
treatment results in less pronounced C. jejuni induced
intestinal responses of distinct innate and adaptive immune
cell populations.

Intestinal Pro-inflammatory Mediator
Secretion Following Vitamin D Treatment
of C. jejuni Infected Mice With Acute
Enterocolitis
We next measured pro-inflammatory mediators in intestinal ex
vivo biopsies. At day 6 following C. jejuni infection increased
IL-6 and MCP-1 concentrations could be assessed in the colon
of placebo (p < 0.01 and p < 0.05, respectively), but not 25-OH-
cholecalciferol treated mice (Figures 5A,B). C. jejuni induced
increases in large intestinal TNF and IFN-γ concentrations (p
< 0.05–0.001 vs. none), however, were unaffected by 25-OH-
cholecalciferol challenge (n.s. vs. PLC; Figures 5C,D). In line,
ileal IL-6 and MCP-1 as well as IFN-γ levels were elevated upon
C. jejuni infection of mice from the placebo (p < 0.05–0.01), but
not from the 25-OH-cholecalciferol cohort (Figures 6A,B,D),
whereas like in the colon, ileal TNF concentrations were
comparably elevated at day 6 post-infection of either cohort (p
< 0.001; Figure 6C). Hence, synthetic 25-OH-cholecalciferol
treatment of C. jejuni infected mice results in less pronounced
secretion of distinct pro-inflammatory mediators in the
intestinal tract.

Extra-Intestinal Inflammatory Immune
Responses Following Vitamin D Treatment
of C. jejuni Infected Mice
We further asked whether the 25-OH-cholecalciferol mediated
anti-inflammatory effects were restricted to the intestinal tract
or also effective in extra-intestinal compartments. In fact, IFN-
γ concentrations were lower in MLN and liver of 25-OH-
cholecalciferol as compared to placebo treated mice at day 6
p.i. (p < 0.05; Figures 7A,B). Interestingly, C. jejuni infection
resulted in decreased IFN-γ secretion in splenic ex vivo biopsies
irrespective of the treatment regimen (p < 0.001; Figure 7C).
Hence, synthetic 25-OH-cholecalciferol treatment of C. jejuni
infected mice resulted in less distinct IFN-γ secretion in MLN
and liver.

Systemic Pro-inflammatory Mediator
Secretion Following Vitamin D Treatment
of C. jejuni Infected Mice With Acute
Enterocolitis
We next addressed whether synthetic 25-OH-cholecalciferol
treatment might alleviate systemic C. jejuni induced pro-
inflammatory immune responses. At day 6 p.i., mice from
either cohort exhibited comparably elevated IL-6, MCP1,
TNF, and IFN-γ serum concentrations (p < 0.001 vs. none;
Figure S5). Hence, synthetic 25-OH-cholecalciferol treatment
does not affect C. jejuni induced systemic pro-inflammatory
mediator secretion.
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FIGURE 4 | Colonic immune cell responses following vitamin D treatment of C. jejuni infected mice. Secondary abiotic IL-10−/− mice were treated with synthetic

25-OH-cholecalciferol (vitamin D, VitD, open circles) or placebo (PLC, closed circles) via the drinking water starting 4 days before peroral C. jejuni 81-176 strain

infection on days 0 and 1. At necropsy (i.e., day 6 post-infection), the average numbers of (A) macrophages and monocytes (F4/80+), (B) T lymphocytes (CD3+) and

(C) regulatory T cells (FOXP3+) were assessed microscopically from six high power fields (HPF, 400× magnification) per animal in immunohistochemically stained

colonic paraffin sections. Uninfected and untreated mice (none, open diamonds) served as negative control animals. Medians (black bars), levels of significance

(p-values) assessed by the one-sided ANOVA test with Tukey post-correction and numbers of analyzed animals (in parentheses) are indicated. Data were pooled from

four independent experiments.

Bacterial Translocation Following Vitamin
D Treatment of C. jejuni Infected Mice With
Acute Enterocolitis
We further asked whether synthetic 25-OH-cholecalciferol
treatment had an impact of the translocation rates of viable
pathogens from the infected intestines to extra-intestinal
including systemic tissue sites. Whereas, C. jejuni could be
cultured at similar frequencies from MLN, liver and lungs
derived from 25-OH-cholecalciferol and placebo treated mice
(Figures 8A–C), cumulative pathogenic translocation rates were
lower in the kidneys (12.5 vs. 31.6%) and the spleen (12.5 vs.
26.3%) taken from the former as compared to the latter at day 6
p.i. (Figures 8D,E). Notably, all blood cultures remainedC. jejuni
negative (Figure 8F). Hence, synthetic 25-OH-cholecalciferol
treatment was associated with lower cumulative translocation
rates of C. jejuni originating from the inflamed intestines to the
kidneys and the spleen.

Colonic Epithelial Barrier Changes
Following Vitamin D Treatment of C. jejuni
Infected Mice With Acute Enterocolitis
Given the lower cumulative pathogenic translocation rates
we assessed whether synthetic 25-OH-cholecalciferol treatment
resulted in a less compromised colonic epithelial barrier
function in C. jejuni infected mice. Therefore, we performed
electrophysiological resistance measurements of colonic ex vivo
biopsies in the Ussing chamber. In fact, transmural resistances
were lower in the large intestines derived from placebo, but not
25-OH-cholecalciferol treated mice at day 6 p.i. as compared to
uninfected and untreated control animals (p < 0.05; Figure 9).
Hence, synthetic 25-OH-cholecalciferol treatment results in

uncompromised colonic epithelial barrier function following C.
jejuni infection.

DISCUSSION

Due to the pleiotropic beneficial effects of vitaminD in health and
disease, the application of vitamin D as safe dietary supplement is
currently discussed as promising option for the adjunct treatment
and prophylaxis of various immunopathological morbidities
including infectious diseases, intestinal inflammatory conditions,
and cancer, for instance (33, 55). In our present vitamin D
intervention study applying a clinical acute campylobacteriosis
model, prophylactic synthetic 25-OH-cholecalciferol application
starting 4 days prior murine infection resulted in dampened
C. jejuni induced intestinal and extra-intestinal inflammatory
sequalae, but could not lower the high intestinal pathogen loads
of more than 109 viable C. jejuni per g feces. In support,
recent reports revealed that the beneficial effects of vitamin D
during gastrointestinal infection with distinct bacterial species
such as Salmonella (56) or Listeria monocytogenes (57) are rather
due to the pleiotropic immuno-modulatory than direct anti-
microbial properties of the steroid hormone. In addition, one
needs to take into consideration, that, in contrary to humans,
the expression of the antimicrobial peptide cathelicidin in mice is
not regulated by vitamin D, given that in the murine cathelicidin
gene promoter the vitamin D response element is missing (58,
59). This could explain our observation that external 25-OH-
cholecalciferol application, even in high doses, did not reduce
intestinal C. jejuni burdens. However, it is tempting to speculate
that this could be the case in humans.

Despite the high intestinal pathogenic burdens, 25-OH-
cholecalciferol treatedmice suffered less frequently from diarrhea
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FIGURE 5 | Colonic secretion of pro-inflammatory mediators following vitamin D treatment of C. jejuni infected mice. Secondary abiotic IL-10−/− mice were treated

with synthetic 25-OH-cholecalciferol (vitamin D, VitD, open circles) or placebo (PLC, closed circles) via the drinking water starting 4 days before peroral C. jejuni

81-176 strain infection on days 0 and 1. At necropsy (i.e., day 6 post-infection), (A) IL-6, (B) MCP1, (C) TNF, and (D) IFN-γ concentrations were determined in

supernatants derived from colonic ex vivo biopsies. Uninfected and untreated mice (none, open diamonds) served as negative control animals. Medians (black bars),

levels of significance (p-values) assessed by the Kruskal-Wallis test and Dunn’s post-correction and numbers of analyzed animals (in parentheses) are indicated. Data

were pooled from four independent experiments.

in the midst of campylobacteriosis development as compared
to placebo controls, but exhibited comparable macroscopic
disease at the end of the observation period. Notably, the
macroscopic outcome particularly in such a non-selflimiting
detrimental intestinal infection and inflammation model is due
to the sum effect of many different intestinal, extra-intestinal and
systemic events within this hyper-inflammatory scenario (24).
It is therefore remarkable, that less distinct C. jejuni induced
apoptosis of colonic epithelial cells, whereas, conversely, large
intestinal cell regenerative properties counteracting pathogen-
induced cell damage were promoted upon 25-OH-cholecalciferol
application in mice suffering from acute enterocolitis. In support,
the intestinal epithelial vitamin D receptor has been shown

to regulate mucosal inflammation by suppressing intestinal
epithelial cell apoptosis (60). Less severe colonic apoptosis
upon 25-OH-cholecalciferol treatment was accompanied by
less distinct immune cell responses upon C. jejuni infection,
which is supported by several studies showing that vitamin
D regulates both, innate and adaptive immunity (61–63). In
our study, lower numbers of innate immune cell populations
such as macrophages and monocytes could be assessed in the
colonic mucosa and lamina propria of C. jejuni infected mice
that had been pretreated with synthetic 25-OH-cholecalciferol.
In line, recent reports revealed that vitamin D stimulation of
antigen presenting cells including macrophages and dendritic
cells resulted in decreased pro-inflammatory mediator secretion
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FIGURE 6 | Ileal secretion of pro-inflammatory mediators following vitamin D treatment of C. jejuni infected mice. Secondary abiotic IL-10−/− mice were treated with

synthetic 25-OH-cholecalciferol (vitamin D, VitD, open circles) or placebo (PLC, closed circles) via the drinking water starting 4 days before peroral C. jejuni 81-176

strain infection on days 0 and 1. At necropsy (i.e., day 6 post-infection), (A) IL-6, (B) MCP1, (C) TNF, and (D) IFN-γ concentrations were determined in supernatants

derived from ileal ex vivo biopsies. Uninfected and untreated mice (none, open diamonds) served as negative control animals. Medians (black bars), levels of

significance (p-values) assessed by the Kruskal-Wallis test and Dunn’s post-correction and numbers of analyzed animals (in parentheses) are indicated. Data were

pooled from four independent experiments.

(59, 64). In addition, colonic mucosal numbers of T lymphocytes
were lower in 25-OH-cholecalciferol as compared to placebo
treated mice with C. jejuni induced enterocolitis. In fact, T
cells have been shown to be direct and indirect targets of
vitamin D (65, 66). Previous in vitro, ex vivo, and in vivo
studies revealed that vitamin D treatment of T cells and of mice
resulted in less distinct T cell proliferation and in decreased
T helper cell (Th)−1 dependent secretion of pro-inflammatory
cytokines and subsequently in ameliorated inflammation (66,
67). In our present study, the colonic concentrations of pro-
inflammatory mediators including IL-6 and MPC-1 measured in
25-OH-cholecalciferol pretreated, C. jejuni infected mice were

comparable to those obtained from naive controls. In support,
vitamin D was shown to reduce recruitment of innate immune
cells such as monocytes and to decrease IL-6 and MCP-1
releases upon in vitro stimulation (68). Notably, the 25-OH-
cholecalciferol associated decreased pro-inflammatry mediator
secretion was not restricted to the large intestines, the major
predilection site of C. jejuni induced enterocolitis (15, 69).
In fact, C. jejuni induced increased secretion of IL-6, MCP-1,
and additionally of IFN-γ could be observed in the terminal
ileum of mice from the placebo, but not from the 25-OH-
cholecalciferol treatment cohort. Interestingly, as opposed to 25-
OH-cholecalciferol related decreases in large intestinal T cell
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FIGURE 7 | Extra-intestinal IFN-γ secretion following vitamin D treatment of C. jejuni infected mice. Secondary abiotic IL-10−/− mice were treated with synthetic

25-OH-cholecalciferol (vitamin D, VitD, open circles) or placebo (PLC, closed circles) via the drinking water starting 4 days before peroral C. jejuni 81-176 strain

infection on days 0 and 1. At necropsy (i.e., day 6 post-infection), IFN-γ concentrations were determined in supernatants of ex vivo biopsies derived from (A)

mesenteric lymph nodes (MLN), (B) liver, and (C) spleen. Uninfected and untreated mice (none, open diamonds) served as negative control animals. Medians (black

bars), levels of significance (p-values) assessed by the Kruskal-Wallis test and Dunn’s post-correction and numbers of analyzed animals (in parentheses) are indicated.

Data were pooled from four independent experiments.

FIGURE 8 | Bacterial translocation following vitamin D treatment of C. jejuni infected mice. Secondary abiotic IL-10−/− mice were treated with synthetic

25-OH-cholecalciferol (vitamin D, VitD, white bars) or placebo (PLC, black bars) via the drinking water starting 4 days before peroral C. jejuni 81-176 strain infection on

days 0 and 1. Upon necropsy (at day 6 post-infection), the abundance of viable pathogens was assessed in ex vivo biopsies taken from (A) mesenteric lymph nodes

(MLN), (B) liver, (C) lung, (D) kidney, (E) spleen, and (F) cardiac blood by culture. The cumulative relative translocation rates of C. jejuni into the respective compartment

out of four independent experiments are indicated in %. The numbers of culture-positive mice out of the total numbers of analyzed animals are given in parentheses.
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FIGURE 9 | Colonic transmural electrical resistance following vitamin D

treatment of C. jejuni infected mice. Secondary abiotic IL-10−/− mice were

treated with synthetic 25-OH-cholecalciferol (vitamin D, VitD, open circles) or

placebo (PLC, closed circles) via the drinking water starting 4 days before

peroral C. jejuni 81-176 strain infection on days 0 and 1. At necropsy (i.e., day

6 post-infection), the transmural electrical resistance of distal colon was

measured in Ussing chambers as described in Materials and Methods.

Uninfected and untreated mice (none, open diamonds) served as negative

control animals. Medians (black bars), levels of significance (p-values)

assessed by the Kruskal-Wallis test and Dunn’s post-correction and numbers

of analyzed animals (in parentheses) are indicated. Data were pooled from two

independent experiments.

numbers, higher numbers of (potentially anti-inflammatory)
FOXP3+ regulatory T cells could be assessed in the colonic
mucosa and lamina propria of 25-OH-cholecalciferol vs. placebo
treated mice with enterocolitis. In support, recent studies
reported that vitamin D results in enhanced recruitment of
regulatory T cells to inflamed tissue sites (70–72). Given that
we did not perform co-staining analyses in our present study,
however, we can not answer which specific immune cell subset
was expressing FOXP3.

Remarkably, the pro-inflammatory immune response-
dampening effects of exogenous 25-OH-cholecalciferol were
not restricted to the intestinal tract, but were also effective
in extra-intestinal compartments given that C. jejuni induced
IFN-γ secretion was less pronounced in MLN draining the
inflamed intestines and in the liver upon 25-OH-cholecalciferol
treatment. In line, previous studies provide evidence that vitamin
D application or even skin exposure to UV light could ameliorate
or prevent from liver inflammation due to vitamin D mediated
dampening of immune cellular responses and inhibition of liver
apoptosis, for instance (73, 74).

At the first glance unexpectedly, C. jejuni infection was
associated with decreases in splenic IFN-γ concentrations in
either cohort. One possible explanation might be that upon
pathogenic infection leukocytes were recruited from the spleen
to the site of infection in order to limit pathogenic spread. One

could have expected an even more prominent effect following
synthetic 25-OH-cholecalciferol application due to the known
immune cell recruiting properties of vitamin D (75).

C. jejuni infection results in impaired epithelial barrier
function in vitro (76) and campylobacteriosis is characterized by
a leaky gut syndrome facilitating pathogenic translocation from
the inflamed intestines to extra-intestinal including systemic
compartments (15, 69). Given that vitamin D has been shown to
preserve epithelial barrier function (75), we assessed potential 25-
OH-cholecalciferol mediated effects on pathogenic translocation
frequencies in our preclinical survey. In fact, when taking
results of the four independent experiment together, C. jejuni
could be cultured less frequently from the kidneys and the
spleen of infected mice following 25-OH-cholecalciferol as
compared to placebo treatment, whereas cumulative relative
C. jejuni translocation rates to MLN, liver and lungs were
comparable. Of note, all blood cultures remained C. jejuni
negative, irrespective of the treatment regimen. One needs to
take into consideration, however, that soluble bacterial molecules
including LOS and others might have been transported via the
circulation contributing to the observed extra-intestinal collateral
damages of C. jejuni infection. Nevertheless, the observed
inflammation-alleviating effects upon 25-OH-cholecalciferol
application were further accompanied by a less compromised
colonic epithelial barrier function in 25-OH-cholecalciferol as
compared to placebo treated, C. jejuni infected mice. This in
turn very likely reduced the risk of spread of both, viable
bacteria and soluble bacterial molecules in the former vs. the
latter. We therefore hypothesize that the 25-OH-cholecalciferol
associated anti-inflammatory effects in particular prevent from
further bacteria-induced damages in this acute C. jejuni induced
inflammation model.

CONCLUSION

Our preclinical intervention study provides evidence that
prophylactic peroral synthetic 25-OH-cholecalciferol application
dampens intestinal and extra-intestinal inflammatory responses
during acute campylobacteriosis in the clinical mouse model
applied here. Further studies are needed in order to define
appropriate vitamin D doses for the prevention and combat of
distinct gastrointestinal infectious morbidities in humans.
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Figure S1 | Fecal C. jejuni loads over time following vitamin D treatment of

infected mice. Secondary abiotic IL-10−/− mice were treated with (A) placebo

(closed circles) or (B) synthetic 25-OH-cholecalciferol (vitamin D, open circles) via

the drinking water starting four days before peroral C. jejuni 81-176 strain infection

on day (d) 0 and d1. Fecal C. jejuni loads were quantitatively assessed from each

mouse on a daily basis post-infection (p.i.) by culture and expressed in colony

forming units per g (CFU/g). Medians (black bars) and numbers of analyzed

animals (in parentheses) are indicated. Data were pooled from four

independent experiments.

Figure S2 | Kinetic survey of overall clinical conditions following vitamin D

treatment of C. jejuni infected mice. Secondary abiotic IL-10−/− mice were

treated with (A) placebo (closed circles) or (B) synthetic 25-OH-cholecalciferol

(vitamin D, open circles) via the drinking water starting four days before peroral C.

jejuni 81-176 strain infection on days 0 and 1. Clinical symptoms were

quantitatively assessed applying a standardized clinical scoring system from d0

until d6 post-infection (see Materials and Methods). Uninfected and untreated

mice (none, open diamonds) served as negative control animals. Medians (black

bars) and numbers of analyzed animals (in parentheses) are indicated. Data were

pooled from four independent experiments.

Figure S3 | Intestinal lengths following vitamin D treatment of C. jejuni infected

mice. Secondary abiotic IL-10−/− mice were treated with synthetic

25-OH-cholecalciferol (vitamin D, VitD, open circles) or placebo (PLC, closed

circles) via the drinking water starting 4 days before peroral C. jejuni 81-176 strain

infection on days 0 and 1. At necropsy (i.e., day 6 post-infection), the absolute

lengths of the (A) colon and (B) small intestines were measured with a ruler.

Uninfected and untreated mice (none, open diamonds) served as negative control

animals. Medians (black bars), levels of significance (p-values) assessed by

one-sided ANOVA test with Tukey post-correction and numbers of analyzed

animals (in parentheses) are indicated. Data were pooled from four

independent experiments.

Figure S4 | Representative photomicrographs illustrating apoptotic and

proliferating epithelial as well as immune cells responses in large intestines

following vitamin D treatment of C. jejuni infected mice. Secondary abiotic

IL-10−/− mice were treated with synthetic 25-OH-cholecalciferol (vitamin D) or

placebo via the drinking water starting 4 days before peroral C. jejuni 81-176

strain infection on days 0 and 1. Naive mice served as uninfected and untreated

controls. Photomicrographs reepresentative for four independent experiments

illustrate the average numbers of (A) apoptotic epithelial cells (Casp3+), (B)

proliferating epithelial cells, (C) macrophages and monocytes (F4/80+), (D) T

lymphocytes (CD3+) and (E) regulatory T cell (Treg, FOXP3+) in at least six high

power fields (HPF) as quantitatively assessed in ileal paraffin sections applying in

situ immunohistochemistry at day 6 post-infection (100× magnification, scale bar

100µm).

Figure S5 | Systemic secretion of pro-inflammatory mediators following vitamin D

treatment of C. jejuni infected mice. Secondary abiotic IL-10−/− mice were

treated with synthetic 25-OH-cholecalciferol (vitamin D, VitD, open circles) or

placebo (PLC, closed circles) via the drinking water starting 4 days before peroral

C. jejuni 81-176 strain infection on days 0 and 1. At necropsy (i.e., day 6

post-infection), (A) IL-6, (B) MCP1, (C) TNF, and (D) IFN-γ concentrations were

determined in serum samples. Uninfected and untreated mice (none, open

diamonds) served as negative control animals. Medians (black bars), levels of

significance (p-values) assessed by the Kruskal-Wallis test and Dunn’s

post-correction and numbers of analyzed animals (in parentheses) are indicated.

Data were pooled from four independent experiments.
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