2,167 research outputs found

    Quantum Dynamics in a Time-dependent Hard-Wall Spherical Trap

    Full text link
    Exact solution of the Schr\"{o}dinger equation is given for a particle inside a hard sphere whose wall is moving with a constant velocity. Numerical computations are presented for both contracting and expanding spheres. The propagator is constructed and compared with the propagator of a particle in an infinite square well with one wall in uniform motion.Comment: 6 pages, 4 figures, Accepted by Europhys. Let

    Efficient adaptive integration of functions with sharp gradients and cusps in n-dimensional parallelepipeds

    Full text link
    In this paper, we study the efficient numerical integration of functions with sharp gradients and cusps. An adaptive integration algorithm is presented that systematically improves the accuracy of the integration of a set of functions. The algorithm is based on a divide and conquer strategy and is independent of the location of the sharp gradient or cusp. The error analysis reveals that for a C0C^0 function (derivative-discontinuity at a point), a rate of convergence of n+1n+1 is obtained in RnR^n. Two applications of the adaptive integration scheme are studied. First, we use the adaptive quadratures for the integration of the regularized Heaviside function---a strongly localized function that is used for modeling sharp gradients. Then, the adaptive quadratures are employed in the enriched finite element solution of the all-electron Coulomb problem in crystalline diamond. The source term and enrichment functions of this problem have sharp gradients and cusps at the nuclei. We show that the optimal rate of convergence is obtained with only a marginal increase in the number of integration points with respect to the pure finite element solution with the same number of elements. The adaptive integration scheme is simple, robust, and directly applicable to any generalized finite element method employing enrichments with sharp local variations or cusps in nn-dimensional parallelepiped elements.Comment: 22 page

    Democratic societies defeat (COVID-19) disasters by boosting shared knowledge

    Get PDF

    Synopsis of an engineering solution for a painful problem Phantom Limb Pain

    Get PDF
    This paper is synopsis of a recently proposed solution for treating patients who suffer from Phantom Limb Pain (PLP). The underpinning approach of this research and development project is based on an extension of “mirror box” therapy which has had some promising results in pain reduction. An outline of an immersive individually tailored environment giving the patient a virtually realised limb presence, as a means to pain reduction is provided. The virtual 3D holographic environment is meant to produce immersive, engaging and creative environments and tasks to encourage and maintain patients’ interest, an important aspect in two of the more challenging populations under consideration (over-60s and war veterans). The system is hoped to reduce PLP by more than 3 points on an 11 point Visual Analog Scale (VAS), when a score less than 3 could be attributed to distraction alone

    Life Cycle Assessment of Municipal Waste Management System (Case Study: Karaj, Iran)

    Get PDF
    LCA has been defined as a tool for evaluating the environmental burdens and potential impacts that can be applied to municipal solid waste management systems for determine the optimum municipal solid waste (MSW) management strategy.To investigate the Waste Management system strategyof Karaj City we used LCA method. Three scenarios were defined and compared based on environmental burden include water pollution, air pollution, consumed energy and waste residues.. For each of these scenarios, an ecological indicator was achieved from checklist values. From the environmental point of view, results show that recycling is one of the best alternatives for Waste Management. Furthermore, composting has an important role in alleviating the load of pollutants and energy usage in the Waste Management system. ©JASEMKeywords: Waste Management system, LCA, Kara

    Numerical Evaluation the Impact of the Inserts Shape on Thermo-Flow Behavior in a Heat Exchanger

    Get PDF
    The improvement of transfers in a heat exchanger can be achieved either by increasing its coolant thermal conductivity or by modifying its geometrical configuration. In this paper, we will be interested in the latter technique by choosing a three-dimensional configuration represented by a channel of rectangular section, on which solid fins of square, circular, or diamond section (vortex generator) have been transversally mounted, which are moreover adiabatic and non-rotating. A convective and forced airflow traverses the channel, and the study focused in principle on the effects of the shape of the fins on the structure of the flow and the rate of heat transfer. The problem is governed by the Navier-Stokes system, coupled with the energy equation de-scribing the thermal process. The resolution of the equation system governing the hydrodynamic phenomenon is performed numerically in three dimensions. To do this, the governing equations of the thermo-hydrodynamic phenomenon are discretized by a finite volume scheme. As for turbulence, it is modeled using the standard model k-É›, and the problem of pressure-velocity coupling is solved by the SIMPLE algorithm (Semi Implicit Method for Pressure Linked Equation). The computed results are presented as curves for the Nusselt number, friction factor, thermal enhancement factor, or amount of heat dissipated, and as a map for the contour of the axial velocity norm and the temperature field distribution
    • …
    corecore