14 research outputs found

    Integrated terrestrial-freshwater planning doubles conservation of tropical aquatic species

    Get PDF
    Conservation initiatives overwhelmingly focus on terrestrial biodiversity, and little is known about the freshwater cobenefits of terrestrial conservation actions. We sampled more than 1500 terrestrial and freshwater species in the Amazon and simulated conservation for species from both realms. Prioritizations based on terrestrial species yielded on average just 22% of the freshwater benefits achieved through freshwater-focused conservation. However, by using integrated cross-realm planning, freshwater benefits could be increased by up to 600% for a 1% reduction in terrestrial benefits. Where freshwater biodiversity data are unavailable but aquatic connectivity is accounted for, freshwater benefits could still be doubled for negligible losses of terrestrial coverage. Conservation actions are urgently needed to improve the status of freshwater species globally. Our results suggest that such gains can be achieved without compromising terrestrial conservation goals

    Poor prospects for avian biodiversity in amazonian oil palm

    Get PDF
    Expansion of oil palm plantations across the humid tropics has precipitated massive loss of tropical forest habitats and their associated speciose biotas. Oil palm plantation monocultures have been identified as an emerging threat to Amazonian biodiversity, but there are no quantitative studies exploring the impact of these plantations on the biome’s biota. Understanding these impacts is extremely important given the rapid projected expansion of oil palm cultivation in the basin. Here we investigate the biodiversity value of oil palm plantations in comparison with other dominant regional land-uses in Eastern Amazonia. We carried out bird surveys in oil palm plantations of varying ages, primary and secondary forests, and cattle pastures. We found that oil palm plantations retained impoverished avian communities with a similar species composition to pastures and agrarian land-uses and did not offer habitat for most forest-associated species, including restricted range species and species of conservation concern. On the other hand, the forests that the oil palm companies are legally obliged to protect hosted a relatively species-rich community including several globally-threatened bird species. We consider oil palm to be no less detrimental to regional biodiversity than other agricultural land-uses and that political pressure exerted by large landowners to allow oil palm to count as a substitute for native forest vegetation in private landholdings with forest restoration deficits would have dire consequences for regional biodiversity

    Anthropogenic disturbance in tropical forests can double biodiversity loss from deforestation

    Get PDF
    © 2016 Macmillan Publishers Limited. All rights reserved. Concerted political attention has focused on reducing deforestation, and this remains the cornerstone of most biodiversity conservation strategies. However, maintaining forest cover may not reduce anthropogenic forest disturbances, which are rarely considered in conservation programmes. These disturbances occur both within forests, including selective logging and wildfires, and at the landscape level, through edge, area and isolation effects. Until now, the combined effect of anthropogenic disturbance on the conservation value of remnant primary forests has remained unknown, making it impossible to assess the relative importance of forest disturbance and forest loss. Here we address these knowledge gaps using a large data set of plants, birds and dung beetles (1,538, 460 and 156 species, respectively) sampled in 36 catchments in the Brazilian state of Pará. Catchments retaining more than 69-80% forest cover lost more conservation value from disturbance than from forest loss. For example, a 20% loss of primary forest, the maximum level of deforestation allowed on Amazonian properties under Brazil's Forest Code, resulted in a 39-54% loss of conservation value: 96-171% more than expected without considering disturbance effects. We extrapolated the disturbance-mediated loss of conservation value throughout Pará, which covers 25% of the Brazilian Amazon. Although disturbed forests retained considerable conservation value compared with deforested areas, the toll of disturbance outside Pará's strictly protected areas is equivalent to the loss of 92,000-139,000 km2 of primary forest. Even this lowest estimate is greater than the area deforested across the entire Brazilian Amazon between 2006 and 2015 (ref. 10). Species distribution models showed that both landscape and within-forest disturbances contributed to biodiversity loss, with the greatest negative effects on species of high conservation and functional value. These results demonstrate an urgent need for policy interventions that go beyond the maintenance of forest cover to safeguard the hyper-diversity of tropical forest ecosystems

    Linear regressions between richness of forest bird species and a) tree biomass and b) distance to the nearest primary forest border.

    No full text
    <p>Linear regressions between richness of forest bird species and a) tree biomass and b) distance to the nearest primary forest border.</p

    Circular phylograms illustrating avian community composition in a) primary forests b) cattle pasture and c) oil palm plantations, families with more than eight species are labelled.

    No full text
    <p>Bold lines indicate species presences in the given land-use type whereas pale lines denote species absences from that land-use type which were found in one or more other land-uses.</p

    The top-ranked 15 bird species in each land-use type which contributed to the dissimilarity of species composition between oil palm plantations, cattle pastures, secondary forests and primary forests.

    No full text
    <p>The top-ranked 15 bird species in each land-use type which contributed to the dissimilarity of species composition between oil palm plantations, cattle pastures, secondary forests and primary forests.</p

    Relative importance of environmental variables in explaining total avian species richness (A) and forest-associated bird richness (B).

    No full text
    <p>Signs indicate the direction of the effect of each variable. The explanatory variables include distance to the forest border (border), tree species richness, forest cover (% of primary forest cover) and biomass of trees (biomass).</p

    NMDS plots of community structure of the avian community in Moju (polygons with heavy black borders) and Paragominas (narrow borders), primary forest transects are represented by dark green squares, secondary forests by light green squares, orange circles are cattle pastures, grey circles are mechanised agriculture and triangles are oil palm plantations (dark red = 15–20 years old, lighter red 0–6 years old).

    No full text
    <p>NMDS plots of community structure of the avian community in Moju (polygons with heavy black borders) and Paragominas (narrow borders), primary forest transects are represented by dark green squares, secondary forests by light green squares, orange circles are cattle pastures, grey circles are mechanised agriculture and triangles are oil palm plantations (dark red = 15–20 years old, lighter red 0–6 years old).</p

    Box plots comparing avian species richness between land-use types, using the entire avian assemblage (A) and just forest-associated birds (B).

    No full text
    <p>Non-significant pairwise differences between land-use types are indicated by the presence of the same letter (according to a Tukey test 95%).</p

    Road networks predict human influence on Amazonian bird communities

    No full text
    Road building can lead to significant deleterious impacts on biodiversity, varying from direct road-kill mortality and direct habitat loss associated with road construction, to more subtle indirect impacts from edge effects and fragmentation. However, little work has been done to evaluate the specific effects of road networks and biodiversity loss beyond the more generalized effects of habitat loss. Here, we compared forest bird species richness and composition in the municipalities of Santarém and Belterra in Pará state, eastern Brazilian Amazon, with a road network metric called ‘roadless volume (RV)’ at the scale of small hydrological catchments (averaging 3721 ha). We found a significant positive relationship between RV and both forest bird richness and the average number of unique species (species represented by a single record) recorded at each site. Forest bird community composition was also significantly affected by RV. Moreover, there was no significant correlation between RV and forest cover, suggesting that road networks may impact biodiversity independently of changes in forest cover. However, variance partitioning analysis indicated that RV has partially independent and therefore additive effects, suggesting that RV and forest cover are best used in a complementary manner to investigate changes in biodiversity. Road impacts on avian species richness and composition independent of habitat loss may result from road-dependent habitat disturbance and fragmentation effects that are not captured by total percentage habitat cover, such as selective logging, fire, hunting, traffic disturbance, edge effects and road-induced fragmentation
    corecore