54 research outputs found

    NUV/Blue spectral observations of sprites in the 320-460 nm region: N2{\mathrm N_2} (2PG) Emissions

    Full text link
    A near-ultraviolet (NUV) spectrograph (320-460 nm) was flown on the EXL98 aircraft sprite observation campaign during July 1998. In this wavelength range video rate (60 fields/sec) spectrographic observations found the NUV/blue emissions to be predominantly N2 (2PG). The negligible level of N2+ (1NG) present in the spectrum is confirmed by observations of a co-aligned, narrowly filtered 427.8 nm imager and is in agreement with previous ground-based filtered photometer observations. The synthetic spectral fit to the observations indicates a characteristic energy of ~1.8 eV, in agreement with our other NUV observations.Comment: 7 pages, 2 figures, 1 table, JGR Space Physics "Effects of Thunderstorms and Lightning in the Upper Atmosphere" Special Sectio

    Complementary genetic screens identify the E3 ubiquitin ligase CBLC, as a modifier of PARP inhibitor sensitivity.

    Get PDF
    Based on a series of basic, preclinical and clinical studies, the Poly (ADP-ribose) Polymerase 1 (PARP1) inhibitor, olaparib, has recently been approved for use in ovarian cancer patients with BRCA1 or BRCA2 mutations. By identifying novel predictive biomarkers of tumour cell sensitivity to olaparib, it is possible that the utility of PARP inhibitors could be extended beyond this patient subgroup. Many of the known genetic determinants of PARP inhibitor response have key roles in DNA damage response (DDR) pathways. Although protein ubiquitylation is known to play an important role in regulating the DDR, the exact mechanisms by which this occurs are not fully understood. Using two parallel RNA interference-based screening approaches, we identified the E3 ubiquitin ligase, CBLC, as a candidate biomarker of response to olaparib. We validated this observation by demonstrating that silencing of CBLC causes increased sensitivity to olaparib in breast cancer cell line models and that defective homologous recombination (HR) DNA repair is the likely cause. This data provides an example of how defects in the ubiquitin machinery have the potential to influence the response of tumour cells to PARP inhibitors

    Scientific maps should reach everyone: The cblindplot R package to let colour blind people visualise spatial patterns

    Get PDF
    Maps represent powerful tools to show the spatial variation of a variable in a straightforward manner. A crucial aspect in map rendering for its interpretation by users is the gamut of colours used for displaying data. One part of this problem is linked to the proportion of the human population that is colour blind and, therefore, highly sensitive to colour palette selection. The aim of this paper is to present the cblindplot R package and its founding function - cblind.plot() - which enables colour blind people to just enter an image in a coding workflow, simply set their colour blind deficiency type, and immediately get as output a colour blind friendly plot. We will first describe in detail colour blind problems, and then show a step by step example of the function being proposed. While examples exist to provide colour blind people with proper colour palettes, in such cases (i) the workflow include a separate import of the image and the application of a set of colour ramp palettes and (ii) albeit being well documented, there are many steps to be done before plotting an image with a colour blind friendly ramp palette. The function described in this paper, on the contrary, allows to (i) automatically call the image inside the function without any initial import step and (ii) explicitly refer to the colour blind deficiency type being experienced, to further automatically apply the proper colour ramp palette

    Simultaneous observation of mesospheric gravity waves and sprites generated by a Midwestern thunderstorm

    Get PDF
    Abstract The present report investigates using simultaneous observations of coincident gravity waves and sprites to establish an upper limit on sprite-associated thermal energy deposition in the mesosphere. The University of Alaska operated a variety of optical imagers and photometers at two ground sites in support of the NASA Sprites99 balloon campaign. One site was atop a US Forest Service lookout tower on Bear Mt. in the Black Hills, in western South Dakota. On the night of 18 August 1999 we obtained from this site simultaneous images of sprites and OH airglow modulated by gravity waves emanating from a very active sprite producing thunderstorm over Nebraska, to the Southeast of Bear Mt. Using 25 s exposures with a bare CCD camera equipped with a red ÿlter, we were able to coincidentally record both short duration (¡10 ms) but bright (¿3 MR) N2 1PG red emissions from sprites and much weaker (∼1 kR), but persistent, OH Meinel nightglow emissions. A time lapse movie created from images revealed short period, complete 360 • concentric wave structures emanating radially outward from a central excitation region directly above the storm. During the initial stages of the storm outwardly expanding waves possessed a period of ≈10 min and wavelength ≈50 km. Over a 1 h interval the waves gradually changed to longer period ≈11 min and shorter wavelength ≈40 km. Over the full 2 h observation time, about two dozen bright sprites generated by the underlying thunderstorm were recorded near the center of the outwardly radiating gravity wave pattern. No distinctive OH brightness signatures uniquely associated with the sprites were detected at the level of 2% of the ambient background brightness, establishing an associated upper limit of approximately T . 0:5 K for a neutral temperature perturbation over the volume of the sprites. The corresponding total thermal energy deposited by the sprite is bounded by these measurements to be less than ∼1 GJ. This value is well above the total energy deposited into the medium by the sprite, estimated by several independent methods to be on the order of ∼1-10 MJ

    Metadata management for high content screening in OMERO

    Get PDF
    High content screening (HCS) experiments create a classic data management challenge—multiple, large sets of heterogeneous structured and unstructured data, that must be integrated and linked to produce a set of “final” results. These different data include images, reagents, protocols, analytic output, and phenotypes, all of which must be stored, linked and made accessible for users, scientists, collaborators and where appropriate the wider community. The OME Consortium has built several open source tools for managing, linking and sharing these different types of data. The OME Data Model is a metadata specification that supports the image data and metadata recorded in HCS experiments. Bio-Formats is a Java library that reads recorded image data and metadata and includes support for several HCS screening systems. OMERO is an enterprise data management application that integrates image data, experimental and analytic metadata and makes them accessible for visualization, mining, sharing and downstream analysis. We discuss how Bio-Formats and OMERO handle these different data types, and how they can be used to integrate, link and share HCS experiments in facilities and public data repositories. OME specifications and software are open source and are available at https://www.openmicroscopy.org

    rasterdiv ‐ an Information Theory tailored R package for measuring ecosystem heterogeneity from space: to the origin and back

    Get PDF
    Ecosystem heterogeneity has been widely recognized as a key ecological indicator of several ecological functions, diversity patterns and change, metapopulation dynamics, population connectivity or gene flow. In this paper, we present a new R package—rasterdiv—to calculate heterogeneity indices based on remotely sensed data. We also provide an ecological application at the landscape scale and demonstrate its power in revealing potentially hidden heterogeneity patterns. The rasterdiv package allows calculating multiple indices, robustly rooted in Information Theory, and based on reproducible open-source algorithms

    A genome-wide IR-induced RAD51 foci RNAi screen identifies CDC73 involved in chromatin remodeling for DNA repair

    Get PDF
    To identify new regulators of homologous recombination repair, we carried out a genome-wide short-interfering RNA screen combined with ionizing irradiation using RAD51 foci formation as readout. All candidates were confirmed by independent short-interfering RNAs and validated in secondary assays like recombination repair activity and RPA foci formation. Network analysis of the top modifiers identified gene clusters involved in recombination repair as well as components of the ribosome, the proteasome and the spliceosome, which are known to be required for effective DNA repair. We identified and characterized the RNA polymerase II-associated protein CDC73/Parafibromin as a new player in recombination repair and show that it is critical for genomic stability. CDC73 interacts with components of the SCF/Cullin and INO80/NuA4 chromatin-remodeling complexes to promote Histone ubiquitination. Our findings indicate that CDC73 is involved in local chromatin decondensation at sites of DNA damage to promote DNA repair. This function of CDC73 is related to but independent of its role in transcriptional elongation
    corecore