220 research outputs found

    Convex Hull of Planar H-Polyhedra

    Get PDF
    Suppose are planar (convex) H-polyhedra, that is, $A_i \in \mathbb{R}^{n_i \times 2}$ and $\vec{c}_i \in \mathbb{R}^{n_i}$. Let $P_i = \{\vec{x} \in \mathbb{R}^2 \mid A_i\vec{x} \leq \vec{c}_i \}$ and $n = n_1 + n_2$. We present an $O(n \log n)$ algorithm for calculating an H-polyhedron with the smallest P={xR2Axc}P = \{\vec{x} \in \mathbb{R}^2 \mid A\vec{x} \leq \vec{c} \} such that P1P2PP_1 \cup P_2 \subseteq P

    A Complete Characterization of the Gap between Convexity and SOS-Convexity

    Full text link
    Our first contribution in this paper is to prove that three natural sum of squares (sos) based sufficient conditions for convexity of polynomials, via the definition of convexity, its first order characterization, and its second order characterization, are equivalent. These three equivalent algebraic conditions, henceforth referred to as sos-convexity, can be checked by semidefinite programming whereas deciding convexity is NP-hard. If we denote the set of convex and sos-convex polynomials in nn variables of degree dd with C~n,d\tilde{C}_{n,d} and ΣC~n,d\tilde{\Sigma C}_{n,d} respectively, then our main contribution is to prove that C~n,d=ΣC~n,d\tilde{C}_{n,d}=\tilde{\Sigma C}_{n,d} if and only if n=1n=1 or d=2d=2 or (n,d)=(2,4)(n,d)=(2,4). We also present a complete characterization for forms (homogeneous polynomials) except for the case (n,d)=(3,4)(n,d)=(3,4) which is joint work with G. Blekherman and is to be published elsewhere. Our result states that the set Cn,dC_{n,d} of convex forms in nn variables of degree dd equals the set ΣCn,d\Sigma C_{n,d} of sos-convex forms if and only if n=2n=2 or d=2d=2 or (n,d)=(3,4)(n,d)=(3,4). To prove these results, we present in particular explicit examples of polynomials in C~2,6ΣC~2,6\tilde{C}_{2,6}\setminus\tilde{\Sigma C}_{2,6} and C~3,4ΣC~3,4\tilde{C}_{3,4}\setminus\tilde{\Sigma C}_{3,4} and forms in C3,6ΣC3,6C_{3,6}\setminus\Sigma C_{3,6} and C4,4ΣC4,4C_{4,4}\setminus\Sigma C_{4,4}, and a general procedure for constructing forms in Cn,d+2ΣCn,d+2C_{n,d+2}\setminus\Sigma C_{n,d+2} from nonnegative but not sos forms in nn variables and degree dd. Although for disparate reasons, the remarkable outcome is that convex polynomials (resp. forms) are sos-convex exactly in cases where nonnegative polynomials (resp. forms) are sums of squares, as characterized by Hilbert.Comment: 25 pages; minor editorial revisions made; formal certificates for computer assisted proofs of the paper added to arXi

    A Bichromatic Incidence Bound and an Application

    Full text link
    We prove a new, tight upper bound on the number of incidences between points and hyperplanes in Euclidean d-space. Given n points, of which k are colored red, there are O_d(m^{2/3}k^{2/3}n^{(d-2)/3} + kn^{d-2} + m) incidences between the k red points and m hyperplanes spanned by all n points provided that m = \Omega(n^{d-2}). For the monochromatic case k = n, this was proved by Agarwal and Aronov. We use this incidence bound to prove that a set of n points, no more than n-k of which lie on any plane or two lines, spans \Omega(nk^2) planes. We also provide an infinite family of counterexamples to a conjecture of Purdy's on the number of hyperplanes spanned by a set of points in dimensions higher than 3, and present new conjectures not subject to the counterexample.Comment: 12 page

    A Transfer Matrix for the Backbone Exponent of Two-Dimensional Percolation

    Full text link
    Rephrasing the backbone of two-dimensional percolation as a monochromatic path crossing problem, we investigate the latter by a transfer matrix approach. Conformal invariance links the backbone dimension D_b to the highest eigenvalue of the transfer matrix T, and we obtain the result D_b=1.6431 \pm 0.0006. For a strip of width L, T is roughly of size 2^{3^L}, but we manage to reduce it to \sim L!. We find that the value of D_b is stable with respect to inclusion of additional ``blobs'' tangent to the backbone in a finite number of points.Comment: 19 page

    Computing the vertices of tropical polyhedra using directed hypergraphs

    Get PDF
    We establish a characterization of the vertices of a tropical polyhedron defined as the intersection of finitely many half-spaces. We show that a point is a vertex if, and only if, a directed hypergraph, constructed from the subdifferentials of the active constraints at this point, admits a unique strongly connected component that is maximal with respect to the reachability relation (all the other strongly connected components have access to it). This property can be checked in almost linear-time. This allows us to develop a tropical analogue of the classical double description method, which computes a minimal internal representation (in terms of vertices) of a polyhedron defined externally (by half-spaces or hyperplanes). We provide theoretical worst case complexity bounds and report extensive experimental tests performed using the library TPLib, showing that this method outperforms the other existing approaches.Comment: 29 pages (A4), 10 figures, 1 table; v2: Improved algorithm in section 5 (using directed hypergraphs), detailed appendix; v3: major revision of the article (adding tropical hyperplanes, alternative method by arrangements, etc); v4: minor revisio

    Lines, Circles, Planes and Spheres

    Full text link
    Let SS be a set of nn points in R3\mathbb{R}^3, no three collinear and not all coplanar. If at most nkn-k are coplanar and nn is sufficiently large, the total number of planes determined is at least 1+k(nk2)(k2)(nk2)1 + k \binom{n-k}{2}-\binom{k}{2}(\frac{n-k}{2}). For similar conditions and sufficiently large nn, (inspired by the work of P. D. T. A. Elliott in \cite{Ell67}) we also show that the number of spheres determined by nn points is at least 1+(n13)t3orchard(n1)1+\binom{n-1}{3}-t_3^{orchard}(n-1), and this bound is best possible under its hypothesis. (By t3orchard(n)t_3^{orchard}(n), we are denoting the maximum number of three-point lines attainable by a configuration of nn points, no four collinear, in the plane, i.e., the classic Orchard Problem.) New lower bounds are also given for both lines and circles.Comment: 37 page

    Identically self-blocking clutters

    Get PDF
    A clutter is identically self-blocking if it is equal to its blocker. We prove that every identically self-blocking clutter different from is nonideal. Our proofs borrow tools from Gauge Duality and Quadratic Programming. Along the way we provide a new lower bound for the packing number of an arbitrary clutter

    Localization via fractional moments for models on Z\mathbb{Z} with single-site potentials of finite support

    Full text link
    One of the fundamental results in the theory of localization for discrete Schr\"odinger operators with random potentials is the exponential decay of Green's function and the absence of continuous spectrum. In this paper we provide a new variant of these results for one-dimensional alloy-type potentials with finitely supported sign-changing single-site potentials using the fractional moment method.Comment: LaTeX-file, 26 pages with 2 LaTeX figure

    Bounding Helly numbers via Betti numbers

    Get PDF
    We show that very weak topological assumptions are enough to ensure the existence of a Helly-type theorem. More precisely, we show that for any non-negative integers bb and dd there exists an integer h(b,d)h(b,d) such that the following holds. If F\mathcal F is a finite family of subsets of Rd\mathbb R^d such that β~i(G)b\tilde\beta_i\left(\bigcap\mathcal G\right) \le b for any GF\mathcal G \subsetneq \mathcal F and every 0id/210 \le i \le \lceil d/2 \rceil-1 then F\mathcal F has Helly number at most h(b,d)h(b,d). Here β~i\tilde\beta_i denotes the reduced Z2\mathbb Z_2-Betti numbers (with singular homology). These topological conditions are sharp: not controlling any of these d/2\lceil d/2 \rceil first Betti numbers allow for families with unbounded Helly number. Our proofs combine homological non-embeddability results with a Ramsey-based approach to build, given an arbitrary simplicial complex KK, some well-behaved chain map C(K)C(Rd)C_*(K) \to C_*(\mathbb R^d).Comment: 29 pages, 8 figure

    From counting to construction of BPS states in N=4 SYM

    Full text link
    We describe a universal element in the group algebra of symmetric groups, whose characters provides the counting of quarter and eighth BPS states at weak coupling in N=4 SYM, refined according to representations of the global symmetry group. A related projector acting on the Hilbert space of the free theory is used to construct the matrix of two-point functions of the states annihilated by the one-loop dilatation operator, at finite N or in the large N limit. The matrix is given simply in terms of Clebsch-Gordan coefficients of symmetric groups and dimensions of U(N) representations. It is expected, by non-renormalization theorems, to contain observables at strong coupling. Using the stringy exclusion principle, we interpret a class of its eigenvalues and eigenvectors in terms of giant gravitons. We also give a formula for the action of the one-loop dilatation operator on the orthogonal basis of the free theory, which is manifestly covariant under the global symmetry.Comment: 41 pages + Appendices, 4 figures; v2 - refs and acknowledgments adde
    corecore