1,875 research outputs found
Novel genipin cross-linked chitosan-silk fibroin sponges for cartilage engineering strategies
The positive interaction of materials with tissues is an important step in regenerative medicine strategies. Hydrogels
that are obtained from polysaccharides and proteins are expected to mimic the natural cartilage environment and
thus provide an optimum milleu for tissue growth and regeneration. In this work, novel hydrogels composed of
blends of chitosan and Bombyx mori silk fibroin were cross-linked with genipin (G) and were freeze dried to
obtain chitosan/silk (CSG) sponges. CSG sponges possess stable and ordered structures because of protein
conformational changes from R-helix/random-coil to -sheet structure, distinct surface morphologies, and pH/
swelling dependence at pH 3, 7.4, and 9. We investigated the cytotoxicity of CSG sponge extracts by using L929
fibroblast-like cells. Furthermore, we cultured ATDC5 cells onto the sponges to evaluate the CSG spongesâ potential
in cartilage repair strategies. These novel sponges promoted adhesion, proliferation, and matrix production of
chondrocyte-like cells. Spongesâ intrinsic properties and biological results suggest that CSG sponges may be
potential candidates for cartilage tissue engineering (TE) strategies.S.S.S. and M.T.R. thank the Portuguese Foundation for Science and Technology (FCT) for Ph.D. scholarships (SFRH/BD/8658/2002 and SFRH/BD/30745/2006, respectively). A.F.M.P. thanks the FCT and FEDER for a grant (POCI/FIS/61621/2004). This work was partially supported by the European-Union-funded STREP project HIPPOCRATES (NMP3-CT-2003-505758) and was carried out under the scope of the European NoE EXPERTISSUES (NMP3-CT-2004-500283). We also acknowledge Adriano Pedro for his contribution to the micro-CT analysis
Induction of a Protective Response in Mice by the Dengue Virus NS3 Protein Using DNA Vaccines
The dengue non-structural 3 (NS3) is a multifunctional protein, containing a serino-protease domain, located at the N-terminal portion, and helicase, NTPase and RTPase domains present in the C-terminal region. This protein is considered the main target for CD4+ and CD8+ T cell responses during dengue infection, which may be involved in protection. However, few studies have been undertaken evaluating the use of this protein as a protective antigen against dengue, as well as other flavivirus. In the present work, we investigate the protective efficacy of DNA vaccines based on the NS3 protein from DENV2. Different recombinant plasmids were constructed, encoding either the full-length NS3 protein or only its functional domains (protease and helicase), fused or not to a signal peptide (t-PA). The recombinant proteins were successfully expressed in transfected BHK-21 cells, and only plasmids encoding the t-PA signal sequence mediated protein secretion. Balb/c mice were immunized with the different DNA vaccines and challenged with a lethal dose of DENV2. Most animals immunized with plasmids encoding the full-length NS3 or the helicase domain survived challenge, regardless of the presence of the t-PA. However, some mice presented clinical signs of infection with high morbidity (hind leg paralysis and hunched posture), mainly in animal groups immunized with the DNA vaccines based on the helicase domain. On the other hand, inoculation with plasmids encoding the protease domain did not induce any protection, since mortality and morbidity rates in these mouse groups were similar to those detected in the control animals. The cellular immune response was analyzed by ELISPOT with a specific-CD8+ T cell NS3 peptide. Results revealed that the DNA vaccines based on the full-length protein induced the production of INF-Îł, thus suggesting the involvement of this branch of the immune system in the protection
Swift J1727.8â1613 Has the Largest Resolved Continuous Jet Ever Seen in an X-Ray Binary
Multiwavelength polarimetry and radio observations of Swift J1727.8â1613 at the beginning of its recent 2023 outburst suggested the presence of a bright compact jet aligned in the northâsouth direction, which could not be confirmed without high-angular-resolution images. Using the Very Long Baseline Array and the Long Baseline Array, we imaged Swift J1727.8â1613 during the hard/hard-intermediate state, revealing a bright core and a large, two-sided, asymmetrical, resolved jet. The jet extends in the northâsouth direction, at a position angle of â0.60° ± 0.07° east of north. At 8.4 GHz, the entire resolved jet structure is âŒ110(d/2.7kpc)/sini au long, with the southern approaching jet extending âŒ80(d/2.7kpc)/sini au from the core, where d is the distance to the source and i is the inclination of the jet axis to the line of sight. These images reveal the most resolved continuous X-ray binary jet, and possibly the most physically extended continuous X-ray binary jet ever observed. Based on the brightness ratio of the approaching and receding jets, we put a lower limit on the intrinsic jet speed of ÎČ â„ 0.27 and an upper limit on the jet inclination of i †74°. In our first observation we also detected a rapidly fading discrete jet knot 66.89 ± 0.04 mas south of the core, with a proper motion of 0.66 ± 0.05 mas hrâ1, which we interpret as the result of a downstream internal shock or a jetâinterstellar medium interaction, as opposed to a transient relativistic jet launched at the beginning of the outburst
Dissection of DLBCL Microenvironment Provides a Gene Expression-Based Predictor of Survival Applicable to Formalin-Fixed Paraffin-Embedded Tissue
Background
Gene expression profiling (GEP) studies recognized a prognostic role for tumor microenvironment (TME) in diffuse large B-cell lymphoma (DLBCL), but the routinely adoption of prognostic stromal signatures remains limited.
Patients and methods
Here, we applied the computational method CIBERSORT to generate a 1028-gene matrix incorporating signatures of 17 immune and stromal cytotypes. Then, we carried out a deconvolution on publicly available GEP data of 482 untreated DLBCLs to reveal associations between clinical outcomes and proportions of putative tumor-infiltrating cell types. Forty-five genes related to peculiar prognostic cytotypes were selected and their expression digitally quantified by NanoString technology on a validation set of 175 formalin-fixed, paraffin-embedded DLBCLs from two randomized trials. Data from an unsupervised clustering analysis were used to build a model of clustering assignment, whose prognostic value was also assessed on an independent cohort of 40 cases. All tissue samples consisted of pretreatment biopsies of advanced-stage DLBCLs treated by comparable R-CHOP/R-CHOP-like regimens.
Results
In silico analysis demonstrated that higher proportion of myofibroblasts (MFs), dendritic cells, and CD4+ T cells correlated with better outcomes and the expression of genes in our panel is associated with a risk of overall and progression-free survival. In a multivariate Cox model, the microenvironment genes retained high prognostic performance independently of the cell-of-origin (COO), and integration of the two prognosticators (COO\u2009+\u2009TME) improved survival prediction in both validation set and independent cohort. Moreover, the major contribution of MF-related genes to the panel and Gene Set Enrichment Analysis suggested a strong influence of extracellular matrix determinants in DLBCL biology.
Conclusions
Our study identified new prognostic categories of DLBCL, providing an easy-to-apply gene panel that powerfully predicts patients\u2019 survival. Moreover, owing to its relationship with specific stromal and immune components, the panel may acquire a predictive relevance in clinical trials exploring new drugs with known impact on TME
First detection of X-ray polarization from the accreting neutron star 4U 1820-303
This paper reports the first detection of polarization in the X-rays for
atoll-source 4U 1820-303, obtained with the Imaging X-ray Polarimetry Explorer
(IXPE) at 99.999% confidence level (CL). Simultaneous polarimetric measurements
were also performed in the radio with the Australia Telescope Compact Array
(ATCA). The IXPE observations of 4U 1820-303 were coordinated with Swift-XRT,
NICER, and NuSTAR aiming to obtain an accurate X-ray spectral model covering a
broad energy interval. The source shows a significant polarization above 4 keV,
with a polarization degree of 2.0(0.5)% and a polarization angle of -55(7) deg
in the 4-7 keV energy range, and a polarization degree of 10(2)% and a
polarization angle of -67(7) deg in the 7-8 keV energy bin. This polarization
also shows a clear energy trend with polarization degree increasing with energy
and a hint for a position-angle change of about 90 deg at 96% CL around 4 keV.
The spectro-polarimetric fit indicates that the accretion disk is polarized
orthogonally to the hard spectral component, which is presumably produced in
the boundary/spreading layer. We do not detect linear polarization from the
radio counterpart, with a 99.97% upper limit of 50% at 7.25 GHz
Measurement of Energy Correlators inside Jets and Determination of the Strong Coupling Formula Presented
Energy correlators that describe energy-weighted distances between two or three particles in a hadronic jet are measured using an event sample of =13 TeV proton-proton collisions collected by the CMS experiment and corresponding to an integrated luminosity of 36.3 fb. The measured distributions are consistent with the trends in the simulation that reveal two key features of the strong interaction: confinement and asymptotic freedom. By comparing the ratio of the measured three- and two-particle energy correlator distributions with theoretical calculations that resum collinear emissions at approximate next-to-next-to-leading-logarithmic accuracy matched to a next-to-leading-order calculation, the strong coupling is determined at the Z boson mass: α (m)=0.1229 , the most precise αm value
obtained using jet substructure observable
Search for heavy neutral leptons in final states with electrons, muons, and hadronically decaying tau leptons in proton-proton collisions at = 13 TeV
A search for heavy neutral leptons (HNLs) of Majorana or Dirac type using proton-proton collision data at = 13 TeV is presented. The data were collected by the CMS experiment at the CERN LHC and correspond to an integrated luminosity of 138 fbâ1. Events with three charged leptons (electrons, muons, and hadronically decaying tau leptons) are selected, corresponding to HNL production in association with a charged lepton and decay of the HNL to two charged leptons and a standard model (SM) neutrino. The search is performed for HNL masses between 10 GeV and 1.5 TeV. No evidence for an HNL signal is observed in data. Upper limits at 95% confidence level are found for the squared coupling strength of the HNL to SM neutrinos, considering exclusive coupling of the HNL to a single SM neutrino generation, for both Majorana and Dirac HNLs. The limits exceed previously achieved experimental constraints for a wide range of HNL masses, and the limits on tau neutrino coupling scenarios with HNL masses above the W boson mass are presented for the first time
- âŠ