127 research outputs found

    Inhibition of 26S proteasome activity by α-synuclein is mediated by the proteasomal chaperone Rpn14/PAAF1

    Get PDF
    \ua9 2024 The Authors. Aging Cell published by the Anatomical Society and John Wiley & Sons Ltd.Parkinson\u27s disease (PD) is characterized by aggregation of α-synuclein (α-syn) into protein inclusions in degenerating brains. Increasing amounts of aggregated α-syn species indicate significant perturbation of cellular proteostasis. Altered proteostasis depends on α-syn protein levels and the impact of α-syn on other components of the proteostasis network. Budding yeast Saccharomyces cerevisiae was used as eukaryotic reference organism to study the consequences of α-syn expression on protein dynamics. To address this, we investigated the impact of overexpression of α-syn and S129A variant on the abundance and stability of most yeast proteins using a genome-wide yeast library and a tandem fluorescent protein timer (tFT) reporter as a measure for protein stability. This revealed that the stability of in total 377 cellular proteins was altered by α-syn expression, and that the impact on protein stability was significantly enhanced by phosphorylation at Ser129 (pS129). The proteasome assembly chaperone Rpn14 was identified as one of the top candidates for increased protein stability by expression of pS129 α-syn. Elevated levels of Rpn14 enhanced the growth inhibition by α-syn and the accumulation of ubiquitin conjugates in the cell. We found that Rpn14 interacts physically with α-syn and stabilizes pS129 α-syn. The expression of α-syn along with elevated levels of Rpn14 or its human counterpart PAAF1 reduced the proteasome activity in yeast and in human cells, supporting that pS129 α-syn negatively affects the 26S proteasome through Rpn14. This comprehensive study into the alternations of protein homeostasis highlights the critical role of the Rpn14/PAAF1 in α-syn-mediated proteasome dysfunction

    Multi organ assessment of compensated cirrhosis patients using quantitative magnetic resonance imaging

    Get PDF
    Background and Aims: Advancing liver disease results in deleterious changes in a number of critical organs. The ability to measure structure, blood flow and tissue perfusion within multiple organs in a single scan has implications for determining the balance of benefit versus harm for therapies. Our aim was to establish the feasibility of Magnetic Resonance Imaging to assess changes in compensated cirrhosis (CC), and relate this to disease severity and future liver related outcomes (LROs). Methods: 60 CC patients, 40 healthy volunteers and 7 decompensated cirrhotics were recruited. In a single scan session, MRI measures comprised phase-contrast MRI vessel blood flow, arterial spin labelling tissue perfusion, T1 longitudinal relaxation time and volume assessment of liver, spleen and kidneys, heart rate and cardiac index. We explore MRI parameters with disease severity and differences in baseline MRI parameters in those 11 (18%) of CC patients who had future LROs. Results: In the liver compositional changes were reflected by increased T1 in progressive disease (p<0.001) and an increase in liver volume in CC (p=0.006), with associated progressive reduction in liver (p < 0.001) and splenic (p<0.001) perfusion. A significant reduction in renal cortex T1 and increase in cardiac index and superior mesenteric arterial (SMA) blood flow was seen with increasing disease severity. Baseline liver T1 (p=0.01) and perfusion (p< 0.01), and renal cortex T1 (p<0.01) were significantly different in CC patients who subsequently developed negative LROs. Conclusions: MRI allows the contemporaneous assessment of organs in liver cirrhosis in a single scan without the requirement of contrast agent. MRI parameters of liver T1, renal T1, hepatic and splenic perfusion, and SMA blood flow were related to risk of LROs

    Pancreatic Ductal Adenocarcinoma Associated with Autoimmune Pancreatitis

    Get PDF
    Autoimmune pancreatitis (AIP), in contrast to other benign chronic pancreatic diseases, can be cured with immunosuppressant drugs, thus the differentiation of AIP from pancreatic cancer is of particular interest in clinical practice. There is the possibility that some patients with AIP may develop pancreatic cancer, and this possibility contributes to increasing our difficulties in differentiating AIP from pancreatic cancer. We herein report the case of a 70-year-old man in whom pancreatic adenocarcinoma and AIP were detected simultaneously. We must carefully monitor AIP patients for the simultaneous presence of pancreatic cancer, even when a diagnosis of AIP is confirmed

    Subcellular Distribution of Mitochondrial Ribosomal RNA in the Mouse Oocyte and Zygote

    Get PDF
    Mitochondrial ribosomal RNAs (mtrRNAs) have been reported to translocate extra-mitochondrially and localize to the germ cell determinant of oocytes and zygotes in some metazoa except mammals. To address whether the mtrRNAs also localize in the mammals, expression and distribution of mitochondrion-encoded RNAs in the mouse oocytes and zygotes was examined by whole-mount in situ hybridization (ISH). Both 12S and 16S rRNAs were predominantly distributed in the animal hemisphere of the mature oocyte. This distribution pattern was rearranged toward the second polar body in zygotes after fertilization. The amount of mtrRNAs decreased around first cleavage, remained low during second cleavage and increased after third cleavage. Staining intensity of the 12S rRNA was weaker than that of the 16S rRNA throughout the examined stages. Similar distribution dynamics of the 16S rRNA was observed in strontium-activated haploid parthenotes, suggesting the distribution rearrangement does not require a component from sperm. The distribution of 16S rRNAs did not coincide with that of mitochondrion-specific heat shock protein 70, suggesting that the mtrRNA is translocated from mitochondria. The ISH-scanning electron microscopy confirms the extra-mitochondrial mtrRNA in the mouse oocyte. Chloramphenicol (CP) treatment of late pronuclear stage zygotes perturbed first cleavage as judged by the greater than normal disparity in size of blastomeres of 2-cell conceptuses. Two-third of the CP-treated zygotes arrested at either 2-cell or 3-cell stage even after the CP was washed out. These findings indicate that the extra-mitochondrial mtrRNAs are localized in the mouse oocyte and implicated in correct cytoplasmic segregation into blastomeres through cleavages of the zygote

    Biochemical and structural studies of a L-haloacid dehalogenase from the thermophilic archaeon Sulfolobus tokodaii

    Get PDF
    addresses: Henry Wellcome Building for Biocatalysis, School of Biosciences, University of Exeter, Stocker Road, Exeter EX4 4QD, UK.types: Journal Article; Research Support, Non-U.S. Gov'tThis a post-print, author-produced version of an article accepted for publication in Extremophiles. Copyright © 2009 Springer Verlag. The definitive version is available at http://link.springer.com/article/10.1007%2Fs00792-008-0208-0Haloacid dehalogenases have potential applications in the pharmaceutical and fine chemical industry as well as in the remediation of contaminated land. The L: -2-haloacid dehalogenase from the thermophilic archaeon Sulfolobus tokodaii has been cloned and over-expressed in Escherichia coli and successfully purified to homogeneity. Here we report the structure of the recombinant dehalogenase solved by molecular replacement in two different crystal forms. The enzyme is a homodimer with each monomer being composed of a core-domain of a beta-sheet bundle surrounded by alpha-helices and an alpha-helical sub-domain. This fold is similar to previously solved mesophilic L: -haloacid dehalogenase structures. The monoclinic crystal form contains a putative inhibitor L: -lactate in the active site. The enzyme displays haloacid dehalogenase activity towards carboxylic acids with the halide attached at the C2 position with the highest activity towards chloropropionic acid. The enzyme is thermostable with maximum activity at 60 degrees C and a half-life of over 1 h at 70 degrees C. The enzyme is relatively stable to solvents with 25% activity lost when incubated for 1 h in 20% v/v DMSO

    IgG4-Related Diseases and the Liver

    Get PDF
    IgG4-related disease (IgG4-RD) is a systemic illness including autoimmune pancreatitis and IgG4-related sclerosing cholangitis (IgG4-SC). Although hepatic presentation of IgG4-RD has been reported, whether intrahepatic small bile ducts and hepatocytes are direct targets of IgG4-RD is uncertain. IgG4-RD is pathologically characterized by the numerous IgG4+ cells found in affected organs, but this IgG4 positivity is also frequently found in extrahepatic cholangiocarcinoma and is prominent, albeit rarely, in other hepatobiliary diseases including primary sclerosing cholangitis and autoimmune hepatitis. Moreover, cholangiocarcinoma arising from precedent IgG4-SC and IgG4-SC accompanying precursor lesions of cholangiocarcinoma (biliary intraepithelial neoplasia) are also reported. Diagnostic criteria for IgG-RD and IgG4-SC were recently proposed, but each individual case should be diagnosed clinicopathologically on the basis of its individual features. © Springer Japan 2016.[Book Chapter

    『肝線維化・脂肪化診断の進歩と将来展望』MRI

    No full text
    corecore