155 research outputs found

    Brillouin scattering studies in Fe3_3O4_4 across the Verwey transition

    Full text link
    Brillouin scattering studies have been carried out on high quality single crystals of Fe3_3O4_4 with [100] and [110] faces in the temperature range of 300 to 30 K. The room temperature spectrum shows a surface Rayleigh wave (SRW) mode at 8 GHz and a longitudinal acoustic (LA) mode at 60 GHz. The SRW mode frequency shows a minimum at the Verwey transition temperature TVT_V of 123 K. The softening of the SRW mode frequency from about 250 K to TVT_V can be quantitatively understood as a result of a decrease in the shear elastic constant C44_{44}, arising from the coupling of shear strain to charge fluctuations. On the other hand, the LA mode frequency does not show any significant change around TVT_V, but shows a large change in its intensity. The latter shows a maximum at around 120 K in the cooling run and at 165 K in the heating run, exhibiting a large hysteresis of 45 K. This significant change in intensity may be related to the presence of stress-induced ordering of Fe3+^{3+} and Fe2+^{2+} at the octahedral sites, as well as to stress-induced domain wall motion.Comment: 14 pages, 3 figures, accepted in Physical Review B 200

    Hijacking of the Pleiotropic Cytokine Interferon-γ by the Type III Secretion System of Yersinia pestis

    Get PDF
    Yersinia pestis, the causative agent of bubonic plague, employs its type III secretion system to inject toxins into target cells, a crucial step in infection establishment. LcrV is an essential component of the T3SS of Yersinia spp, and is able to associate at the tip of the secretion needle and take part in the translocation of anti-host effector proteins into the eukaryotic cell cytoplasm. Upon cell contact, LcrV is also released into the surrounding medium where it has been shown to block the normal inflammatory response, although details of this mechanism have remained elusive. In this work, we reveal a key aspect of the immunomodulatory function of LcrV by showing that it interacts directly and with nanomolar affinity with the inflammatory cytokine IFNγ. In addition, we generate specific IFNγ mutants that show decreased interaction capabilities towards LcrV, enabling us to map the interaction region to two basic C-terminal clusters of IFNγ. Lastly, we show that the LcrV-IFNγ interaction can be disrupted by a number of inhibitors, some of which display nanomolar affinity. This study thus not only identifies novel potential inhibitors that could be developed for the control of Yersinia-induced infection, but also highlights the diversity of the strategies used by Y. pestis to evade the immune system, with the hijacking of pleiotropic cytokines being a long-range mechanism that potentially plays a key role in the severity of plague

    Comparative Omics-Driven Genome Annotation Refinement: Application across Yersiniae

    Get PDF
    Genome sequencing continues to be a rapidly evolving technology, yet most downstream aspects of genome annotation pipelines remain relatively stable or are even being abandoned. The annotation process is now performed almost exclusively in an automated fashion to balance the large number of sequences generated. One possible way of reducing errors inherent to automated computational annotations is to apply data from omics measurements (i.e. transcriptional and proteomic) to the un-annotated genome with a proteogenomic-based approach. Here, the concept of annotation refinement has been extended to include a comparative assessment of genomes across closely related species. Transcriptomic and proteomic data derived from highly similar pathogenic Yersiniae (Y. pestis CO92, Y. pestis Pestoides F, and Y. pseudotuberculosis PB1/+) was used to demonstrate a comprehensive comparative omic-based annotation methodology. Peptide and oligo measurements experimentally validated the expression of nearly 40% of each strain's predicted proteome and revealed the identification of 28 novel and 68 incorrect (i.e., observed frameshifts, extended start sites, and translated pseudogenes) protein-coding sequences within the three current genome annotations. Gene loss is presumed to play a major role in Y. pestis acquiring its niche as a virulent pathogen, thus the discovery of many translated pseudogenes, including the insertion-ablated argD, underscores a need for functional analyses to investigate hypotheses related to divergence. Refinements included the discovery of a seemingly essential ribosomal protein, several virulence-associated factors, a transcriptional regulator, and many hypothetical proteins that were missed during annotation

    Hypothermia following antipsychotic drug use

    Get PDF
    Objective: Hypothermia is an adverse drug reaction (ADR) of antipsychotic drug (APD) use. Risk factors for hypothermia in ADP users are unknown. We studied which risk factors for hypothermia can be identified based on case reports. Method: Case reports of hypothermia in APD-users found in PUBMED or EMBASE were searched for risk factors. The WHO international database for Adverse Drug Reactions was searched for reports of hypothermia and APD use. Results: The literature search resulted in 32 articles containing 43 case reports. In the WHO database, 480 reports were registered of patients developing hypothermia during the use of APDs which almost equals the number of reports for hyperthermia associated with APD use (n=524). Hypothermia risk seems to be increased in the first days following start or dose increase of APs. APs with strong 5-HT2 antagonism seem to be more involved in hypothermia; 55% of hypothermia reports are for atypical antipsychotics. Schizophrenia was the most prevalent diagnosis in the case reports. Conclusion: Especially in admitted patients who are not able to control their own environment or physical status, frequent measurements of body temperature (with a thermometer that can measure low body temperatures) must be performed in order to detect developing hypothermia

    Phylogeography and Molecular Epidemiology of Yersinia pestis in Madagascar

    Get PDF
    Plague, caused by the bacterium Yersinia pestis, has been a problem in Madagascar since it was introduced in 1898. It mainly affects the central highlands, but also has caused several large outbreaks in the port city of Mahajanga, after it was reintroduced there in the 1990s. Despite its prevalence, the genetic diversity and related geographic distribution of different genetic groups of Y. pestis in Madagascar has been difficult to study due to the great genetic similarity among isolates. We subtyped a set of Malagasy isolates and identified two major genetic groups that were subsequently divided into 11 and 4 subgroups, respectively. Y. pestis appears to be maintained in several geographically separate subpopulations. There is also evidence for multiple long distance transfers of Y. pestis, likely human mediated. Such transfers have resulted in the reintroduction and establishment of plague in the port city of Mahajanga where there is evidence for multiple transfers both from and to the central highlands. The maintenance and spread of Y. pestis in Madagascar is a dynamic and highly active process that relies on the natural cycle between the primary host, the black rat, and its flea vectors as well as human activity

    Remodeling of the Streptococcus agalactiae Transcriptome in Response to Growth Temperature

    Get PDF
    BACKGROUND: To act as a commensal bacterium and a pathogen in humans and animals, Streptococcus agalactiae (group B streptococcus, GBS) must be able to monitor and adapt to different environmental conditions. Temperature variation is a one of the most commonly encountered variables. METHODOLOGY/PRINCIPAL FINDINGS: To understand the extent to which GBS modify gene expression in response to temperatures encountered in the various hosts, we conducted a whole genome transcriptome analysis of organisms grown at 30 degrees C and 40 degrees C. We identified extensive transcriptome remodeling at various stages of growth, especially in the stationary phase (significant transcript changes occurred for 25% of the genes). A large proportion of genes involved in metabolism was up-regulated at 30 degrees C in stationary phase. Conversely, genes up-regulated at 40 degrees C relative to 30 degrees C include those encoding virulence factors such as hemolysins and extracellular secreted proteins with LPXTG motifs. Over-expression of hemolysins was linked to larger zones of hemolysis and enhanced hemolytic activity at 40 degrees C. A key theme identified by our study was that genes involved in purine metabolism and iron acquisition were significantly up-regulated at 40 degrees C. CONCLUSION/SIGNIFICANCE: Growth of GBS in vitro at different temperatures resulted in extensive remodeling of the transcriptome, including genes encoding proven and putative virulence genes. The data provide extensive new leads for molecular pathogenesis research

    Применение викасола как перспективного средства фармакологической коррекции экспериментального нефролитиаза

    Get PDF
    The aim of the investigation was studying vicasole’s effect on experimental oxalate nephrolithiasis.Experimental nephrolithiasis was being modeled by using of 1% ethylenglycole’s solution as a drink for rats during 6 weeks. First group was control. In the second group since the third week was being administrated vicasole in dose 500 mkg/kg. Was being detected parameters of kidney’s function, markers enzymes activity and free oxygen’s radicals activity, was carried out morphological researches.It was concluded that vicasole’s therapy reduce experimental oxalate nephrolithiasisПроведено исследование влияния викасола на течение экспериментального оксалатного нефролитиаза.Экспериментальный нефролитиаз моделировали у двух групп крыс путем потребления в течение 6 нед 1%-го раствора этиленгликоля в виде питья. Первая группа являлась контрольной. Во второй группе начиная с 3-й нед ежедневно вводили подкожно викасол в дозе 500 мкг/кг массы тела. Определяли показатели экскреторной функции почек, измеряли активность маркерных ферментов и процесса свободнорадикального окисления, а также проводили морфометрическое исследование почечных срезов.Установлено, что викасол существенно облегчает течение экспериментального нефролитиаза

    Опыт применения натрия пирофосфата при оксалатном нефролитиазе в эксперименте

    Get PDF
    The aim of the investigation was studying sodium pyrophosphate’s effect on experimental oxalate nephrolithiasis.Experimental nephrolithiasis modeling by using of 1% ethylenglycole’s solution as a drink for rats during 6 weeks. First group was control. In the second group since the third week was being administrated sodium pyrophosphate in dose 2 g/kg. Was detecting parameters of kidney’s function, markers enzymes activity, was carried out morphological researches.It was concluded that sodium pyrophosphate’s therapy reduce experimental oxalate nephrolithiasis.Изучено влияние натрия пирофосфата на течение экспериментального оксалатного нефролитиаза.Экспериментальный нефролитиаз моделировался у двух групп крыс путем потребления в течение 6 нед 1%-го раствора этиленгликоля в виде питья. Первая группа являлась контрольной. Во второй группе начиная с 3-й нед ежедневно вводился внутрь натрия пирофосфат в дозе 2 г/кг массы тела. Осуществлялось определение показателей экскреторной функции почек, измерение активности маркерных ферментов, а также морфометрическое исследование почечных срезов.Установлено, что натрия пирофосфат существенно облегчает течение экспериментального нефролитиаза

    Intrinsic Thermal Sensing Controls Proteolysis of Yersinia Virulence Regulator RovA

    Get PDF
    Pathogens, which alternate between environmental reservoirs and a mammalian host, frequently use thermal sensing devices to adjust virulence gene expression. Here, we identify the Yersinia virulence regulator RovA as a protein thermometer. Thermal shifts encountered upon host entry lead to a reversible conformational change of the autoactivator, which reduces its DNA-binding functions and renders it more susceptible for proteolysis. Cooperative binding of RovA to its target promoters is significantly reduced at 37°C, indicating that temperature control of rovA transcription is primarily based on the autoregulatory loop. Thermally induced reduction of DNA-binding is accompanied by an enhanced degradation of RovA, primarily by the Lon protease. This process is also subject to growth phase control. Studies with modified/chimeric RovA proteins indicate that amino acid residues in the vicinity of the central DNA-binding domain are important for proteolytic susceptibility. Our results establish RovA as an intrinsic temperature-sensing protein in which thermally induced conformational changes interfere with DNA-binding capacity, and secondarily render RovA susceptible to proteolytic degradation

    Modified Needle-Tip PcrV Proteins Reveal Distinct Phenotypes Relevant to the Control of Type III Secretion and Intoxication by Pseudomonas aeruginosa

    Get PDF
    The type III secretion system (T3SS) is employed to deliver effector proteins to the cytosol of eukaryotic hosts by multiple species of Gram-negative bacteria, including Pseudomonas aeruginosa. Translocation of effectors is dependent on the proteins encoded by the pcrGVHpopBD operon. These proteins form a T3S translocator complex, composed of a needle-tip complex (PcrV), translocons (PopB and PopD), and chaperones (PcrG and PcrH). PcrV mediates the folding and insertion of PopB/PopD in host plasmic membranes, where assembled translocons form a translocation channel. Assembly of this complex and delivery of effectors through this machinery is tightly controlled by PcrV, yet the multifunctional aspects of this molecule have not been defined. In addition, PcrV is a protective antigen for P. aeruginosa infection as is the ortholog, LcrV, for Yersinia. We constructed PcrV derivatives containing in-frame linker insertions and site-specific mutations. The expression of these derivatives was regulated by a T3S-specific promoter in a pcrV-null mutant of PA103. Nine derivatives disrupted the regulation of effector secretion and constitutively released an effector protein into growth medium. Three of these regulatory mutants, in which the linker was inserted in the N-terminal globular domain, were competent for the translocation of a cytotoxin, ExoU, into eukaryotic host cells. We also isolated strains expressing a delayed-toxicity phenotype, which secrete translocators slowly despite the normal level of effector secretion. Most of the cytotoxic translocation-competent strains retained the protective epitope of PcrV derivatives, and Mab166 was able to protect erythrocytes during infection with these strains. The use of defined PcrV derivatives possessing distinct phenotypes may lead to a better understanding of the functional aspects of T3 needle-tip proteins and the development of therapeutic agents or vaccines targeting T3SS-mediated intoxication
    corecore