61 research outputs found

    β1 integrin mediates an alternative survival pathway in breast cancer cells resistant to lapatinib

    Get PDF
    Abstract Introduction The overexpression of human epidermal growth factor receptor (HER)-2 in 20% of human breast cancers and its association with aggressive growth has led to widespread use of HER2-targeted therapies, such as trastuzumab (T) and lapatinib (L). Despite the success of these drugs, their efficacy is limited in patients whose tumors demonstrate de novo or acquired resistance to treatment. The β1 integrin resides on the membrane of the breast cancer cell, activating several elements of breast tumor progression including proliferation and survival. Methods We developed a panel of HER2-overexpressing cell lines resistant to L, T, and the potent LT combination through long-term exposure and validated these models in 3D culture. Parental and L/T/LT-resistant cells were subject to HER2 and β1 integrin inhibitors in 3D and monitored for 12 days, followed by quantification of colony number. Parallel experiments were conducted where cells were either stained for Ki-67 and Terminal deoxynucleotidyl transferase dUTP nick end labeling (TUNEL) or harvested for protein and analyzed by immunoblot. Results were subjected to statistical testing using analysis of variance and linear contrasts, followed by adjustment with the Sidak method. Results Using multiple cell lines including BT474 and HCC1954, we reveal that in L and LT resistance, where phosphorylation of EGFR/HER1, HER2, and HER3 are strongly inhibited, kinases downstream of β1 integrin--including focal adhesion kinase (FAK) and Src--are up-regulated. Blockade of β1 by the antibody AIIB2 abrogates this up-regulation and functionally achieves significant growth inhibition of L and LT resistant cells in 3D, without dramatically affecting the parental cells. SiRNA against β1 as well as pharmacologic inhibition of FAK achieve the same growth inhibitory effect. In contrast, trastuzumab-resistant cells, which retain high levels of phosphorylated EGFR/HER1, HER2, and HER3, are only modestly growth-inhibited by AIIB2. Conclusions Our data suggest that HER2 activity, which is suppressed in resistance involving L but not T alone, dictates whether β1 mediates an alternative pathway driving resistance. Our findings justify clinical studies investigating the inhibition of β1 or its downstream signaling moieties as strategies to overcome acquired L and LT resistance

    Kinase inhibitor pulldown assay identifies a chemotherapy response signature in triple-negative breast cancer based on purine-binding proteins

    Get PDF
    UNLABELLED: Triple-negative breast cancer (TNBC) constitutes 10%-15% of all breast tumors. The current standard of care is multiagent chemotherapy, which is effective in only a subset of patients. The original objective of this study was to deploy a mass spectrometry (MS)-based kinase inhibitor pulldown assay (KIPA) to identify kinases elevated in non-pCR (pathologic complete response) cases for therapeutic targeting. Frozen optimal cutting temperature compound-embedded core needle biopsies were obtained from 43 patients with TNBC before docetaxel- and carboplatin-based neoadjuvant chemotherapy. KIPA was applied to the native tumor lysates that were extracted from samples with high tumor content. Seven percent of all identified proteins were kinases, and none were significantly associated with lack of pCR. However, among a large population of off-target purine-binding proteins (PBP) identified, seven were enriched in pCR-associated samples ( SIGNIFICANCE: The identification of pretreatment predictive biomarkers for pCR in response to neoadjuvant chemotherapy would advance precision treatment for TNBC. To complement standard proteogenomic discovery profiling, a KIPA was deployed and unexpectedly identified a seven-member non-kinase PBP pCR-associated signature. Individual members served diverse pathways including IFN gamma response, nuclear import of DNA repair proteins, and cell death

    Endocrine‐based treatments in clinically‐relevant subgroups of hormone receptor‐positive/HER2‐negative metastatic breast cancer: systematic review and meta‐analysis

    Get PDF
    A precise assessment of the efficacy of first‐/second‐line endocrine therapies (ET) ± target therapies (TT) in clinically‐relevant subgroups of hormone receptor‐positive (HR+)/HER2‐negative metastatic breast cancer (MBC) has not yet been conducted. To improve our current knowledge and support clinical decision‐making, we thus conducted a systematic literature search to identify all first‐/second‐line phase II/III randomized clinical trials (RCT) of currently approved or most promising ET ± TT. Then, we performed a meta‐analysis to assess progression‐free (PFS) and/or overall survival (OS) benefit in several clinically‐relevant prespecified subgroups. Thirty‐five RCT were included (17,595 patients). Pooled results show significant reductions in the risk of relapse or death of 26–41% and 12–27%, respectively, depending on the clinical subgroup. Combination strategies proved to be more effective than single‐agent ET (PFS hazard ratio (HR) range for combinations: 0.60–0.65 vs. HR range for single agent ET: 0.59–1.37; OS HR range for combinations: 0.74–0.87 vs. HR range for single agent ET: 0.68–0.98), with CDK4/6‐inhibitors(i) + ET being the most effective regimen. Single agent ET showed comparable efficacy with ET+TT combinations in nonvisceral (p = 0.63) and endocrine sensitive disease (p = 0.79), while mTORi‐based combinations proved to be a valid therapeutic option in endocrine‐resistant tumors, as well as PI3Ki + ET in PIK3CA‐mutant tumors. These results strengthen international treatment guidelines and can aid therapeutic decision‐making

    TBCRC023: A Randomized Phase II Neoadjuvant Trial of Lapatinib Plus Trastuzumab Without Chemotherapy for 12 versus 24 Weeks in Patients with HER2-Positive Breast Cancer

    Get PDF
    Purpose: Prior neoadjuvant trials with 12 weeks of dual anti-HER2 therapy without chemotherapy demonstrated a meaningful pathologic complete response (pCR) in patients with HER2-positive breast cancer. In this trial, we sought to determine whether longer treatment would increase the rate of pCR. Patients and Methods: TBCRC023 (NCT00999804) is a randomized phase II trial combining a Simon phase II design in the experimental arm with a pick-the-winner design, not powered for direct comparison. Women with HER2-positive breast tumors measuring ≥2 cm (median = 5 cm) were randomized in a 1:2 ratio to 12 versus 24 weeks of lapatinib and trastuzumab. Letrozole (along with ovarian suppression if premenopausal) was administered in patients whose tumors were also estrogen receptor (ER) positive. All evaluable patients were assessed for in-breast pCR. Results: Ninety-seven patients were enrolled (33 in 12-week arm and 64 in 24-week arm), of whom 94 were evaluable. Median age was 51 years, and 55% were postmenopausal. Median tumor size was 5 cm, and 65% were ER-positive. The rate of pCR in the 24-week arm was 28% and numerically superior to the 12-week arm (12%). This was driven by increased pCR in the ER-positive subgroup (33% vs. 9%). Study treatment was well tolerated, with grade 1–2 diarrhea and acneiform rash being the most common toxicities. Conclusions: Treatment with dual anti-HER2 therapy for 24 weeks led to a numeric increase in pCR rate in women with HER2-positive breast cancer, without using chemotherapy. If validated, this approach may help identify patients who may benefit from deescalation of therapy

    Different mechanisms for resistance to trastuzumab versus lapatinib in HER2- positive breast cancers -- role of estrogen receptor and HER2 reactivation

    Get PDF
    Introduction: The human epidermal growth factor receptor 2 (HER2)-targeted therapies trastuzumab (T) and lapatinib (L) show high efficacy in patients with HER2-positive breast cancer, but resistance is prevalent. Here we investigate resistance mechanisms to each drug alone, or to their combination using a large panel of HER2-positive cell lines made resistant to these drugs. Methods: Response to L + T treatment was characterized in a panel of 13 HER2-positive cell lines to identify lines that were de novo resistant. Acquired resistant lines were then established by long-term exposure to increasing drug concentrations. Levels and activity of HER2 and estrogen receptor (ER) pathways were determined by qRT-PCR, immunohistochemistry, and immunoblotting assays. Cell growth, proliferation, and apoptosis in parental cells and resistant derivatives were assessed in response to inhibition of HER or ER pathways, either pharmacologically (L, T, L + T, or fulvestrant) or by using siRNAs. Efficacy of combined endocrine and anti-HER2 therapies was studied in vivo using UACC-812 xenografts. Results: ER or its downstream products increased in four out of the five ER+/HER2+ lines, and was evident in one of the two intrinsically resistant lines. In UACC-812 and BT474 parental and resistant derivatives, HER2 inhibition by T reactivated HER network activity to promote resistance. T-resistant lines remained sensitive to HER2 inhibition by either L or HER2 siRNA. With more complete HER2 blockade, resistance to L-containing regimens required the activation of a redundant survival pathway, ER, which was up-regulated and promoted survival via various Bcl2 family members. These L-and L + T-resistant lines were responsive to fulvestrant and to ER siRNA. However, after prolonged treatment with L, but not L + T, BT474 cells switched from depending on ER as a survival pathway, to relying again on the HER network (increased HER2, HER3, and receptor ligands) to overcome L's effects. The combination of endocrine and L + T HER2-targeted therapies achieved complete tumor regression and prevented development of resistance in UACC-812 xenografts. Conclusions: Combined L + T treatment provides a more complete and stable inhibition of the HER network. With sustained HER2 inhibition, ER functions as a key escape/survival pathway in ER-positive/HER2-positive cells. Complete blockade of the HER network, together with ER inhibition, may provide optimal therapy in selected patients

    Phase II Study of Lapatinib in Combination With Trastuzumab in Patients With Human Epidermal Growth Factor Receptor 2–Positive Metastatic Breast Cancer: Clinical Outcomes and Predictive Value of Early [ 18 F]Fluorodeoxyglucose Positron Emission Tomography Imaging (TBCRC 003)

    Get PDF
    Lapatinib plus trastuzumab improves outcomes relative to lapatinib alone in heavily pretreated, human epidermal growth factor receptor 2–positive metastatic breast cancer (MBC). We tested the combination in the earlier-line setting and explored the predictive value of [18F]fluorodeoxyglucose positron emission tomography ([18F]FDG-PET) for clinical outcomes

    A Renewable Tissue Resource of Phenotypically Stable, Biologically and Ethnically Diverse, Patient-Derived Human Breast Cancer Xenograft Models

    Get PDF
    Breast cancer research is hampered by difficulties in obtaining and studying primary human breast tissue, and by the lack of in vivo preclinical models that reflect patient tumor biology accurately. To overcome these limitations, we propagated a cohort of human breast tumors grown in the epithelium-free mammary fat pad of SCID/Beige and NOD/SCID/IL2γ-receptor null (NSG) mice, under a series of transplant conditions. Both models yielded stably transplantable xenografts at comparably high rates (~21% and ~19%, respectively). Of the conditions tested, xenograft take rate was highest in the presence of a low-dose estradiol pellet. Overall, 32 stably transplantable xenograft lines were established, representing 25 unique patients. Most tumors yielding xenografts were “triple-negative” (ER-PR-HER2+) (n=19). However, we established lines from three ER-PR-HER2+ tumors, one ER+PR-HER2−, one ER+PR+HER2− and one “triple-positive” (ER+PR+HER2+) tumor. Serially passaged xenografts show biological consistency with the tumor of origin, are phenotypically stable across multiple transplant generations at the histologic, transcriptomic, proteomic, and genomic levels, and show comparable treatment responses as those observed clinically. Xenografts representing 12 patients, including two ER+ lines, showed metastasis to the mouse lung. These models thus serve as a renewable, quality-controlled tissue resource for preclinical studies investigating treatment response and metastasis

    The oral selective oestrogen receptor degrader (SERD) AZD9496 is comparable to fulvestrant in antagonising ER and circumventing endocrine resistance.

    Get PDF
    BACKGROUND: The oestrogen receptor (ER) is an important therapeutic target in ER-positive (ER+) breast cancer. The selective ER degrader (SERD), fulvestrant, is effective in patients with metastatic breast cancer, but its intramuscular route of administration and low bioavailability are major clinical limitations. METHODS: Here, we studied the pharmacology of a new oral SERD, AZD9496, in a panel of in vitro and in vivo endocrine-sensitive and -resistant breast cancer models. RESULTS: In endocrine-sensitive models, AZD9496 inhibited cell growth and blocked ER activity in the presence or absence of oestrogen. In vivo, in the presence of oestrogen, short-term AZD9496 treatment, like fulvestrant, resulted in tumour growth inhibition and reduced expression of ER-dependent genes. AZD9496 inhibited cell growth in oestrogen deprivation-resistant and tamoxifen-resistant cell lines and xenograft models that retain ER expression. AZD9496 effectively reduced ER levels and ER-induced transcription. Expression analysis of short-term treated tumours showed that AZD9496 potently inhibited classic oestrogen-induced gene transcription, while simultaneously increasing expression of genes negatively regulated by ER, including genes potentially involved in escape pathways of endocrine resistance. CONCLUSIONS: These data suggest that AZD9496 is a potent anti-oestrogen that antagonises and degrades ER with anti-tumour activity in both endocrine-sensitive and endocrine-resistant models
    corecore