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RESEARCH ARTICLE https://doi.org/10.1158/2767-9764.CRC-22-0501 OPEN ACCESS

Check for
updatesKinase Inhibitor Pulldown Assay Identifies

a Chemotherapy Response Signature in
Triple-negative Breast Cancer Based on
Purine-binding Proteins
Junkai Wang1,2, Alexander B. Saltzman3, Eric J. Jaehnig1, Jonathan T. Lei1,
Anna Malovannaya3,4, Matthew V. Holt1, Meggie N. Young4, Mothaffar F. Rimawi1,
Foluso O. Ademuyiwa5, Meenakshi Anurag1,6, Beom-Jun Kim1,7, and Matthew J. Ellis1,7

ABSTRACT

Triple-negative breast cancer (TNBC) constitutes 10%–15% of all breast tu-
mors. The current standard of care is multiagent chemotherapy, which is
effective in only a subset of patients. The original objective of this study
was to deploy a mass spectrometry (MS)-based kinase inhibitor pulldown
assay (KIPA) to identify kinases elevated in non-pCR (pathologic complete
response) cases for therapeutic targeting. Frozen optimal cutting tem-
perature compound–embedded core needle biopsies were obtained from
43 patients with TNBC before docetaxel- and carboplatin-based neoad-
juvant chemotherapy. KIPA was applied to the native tumor lysates that
were extracted from samples with high tumor content. Seven percent of
all identified proteins were kinases, and none were significantly associ-
ated with lack of pCR. However, among a large population of “off-target”
purine-binding proteins (PBP) identified, seven were enriched in pCR-
associated samples (P< 0.01). In orthogonal mRNA-based TNBC datasets,
this seven-gene “PBP signature” was associated with chemotherapy sensi-
tivity and favorable clinical outcomes. Functional annotation demonstrated

IFN gamma response, nuclear import of DNA repair proteins, and cell
death associations. Comparisons with standard tandemmass tagged–based
discovery proteomics performed on the same samples demonstrated that
KIPA-nominated pCR biomarkers were unique to the platform. KIPA is
a novel biomarker discovery tool with unexpected utility for the identifi-
cation of PBPs related to cytotoxic drug response. The PBP signature has
the potential to contribute to clinical trials designed to either escalate or
de-escalate therapy based on pCR probability.

Significance: The identification of pretreatment predictive biomarkers for
pCR in response to neoadjuvant chemotherapy would advance precision
treatment for TNBC. To complement standard proteogenomic discovery
profiling, a KIPA was deployed and unexpectedly identified a seven-
member non-kinase PBP pCR-associated signature. Individual members
served diverse pathways including IFN gamma response, nuclear import of
DNA repair proteins, and cell death.

Introduction
A total of 10% to 15% of breast tumors do not express estrogen receptor (ER)
or progesterone receptor (PR), and are HER2 amplification negative (triple-
negative breast cancer—TNBC; ref. 1). While TNBC is considered a single
clinical entity and treated similarly, these tumors are highly diverse at both
the clinical and molecular levels (1, 2). In the neoadjuvant chemotherapy treat-
ment setting, approximately 40%–65% of patients have a pathologic complete
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response (pCR) in the breast and lymph nodes, depending on the chemother-
apy regimen and whether programmed cell death 1 (PD1)/programmed death 1
ligand 1 (PD-L1)–directed antibodies are used (3, 4). When patients experience
pCR, it is highly associated with improved overall survival (5, 6). Therefore,
pCR is a valuable intermediate endpoint for designing new treatment regimens
and triaging patients to salvage therapies, such as capecitabine or olaparib (7, 8).
Unfortunately, there are currently no reliable methods to predict the likelihood
of pCR from a pretreatment biopsy. An accurate pCR predictor would identify
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Translational Relevance
The identification of pretreatment predictive biomarkers for
pathologic complete response (pCR) in response to neoadjuvant
chemotherapy would advance precision treatment for triple-negative
breast cancer (TNBC). To complement standard proteogenomic
profiling, an optimized version of a kinase inhibitor pulldown assay
(KIPA) was deployed in an analysis of 43 baseline TNBC biopsy
samples collected before docetaxel and carboplatin neoadjuvant
chemotherapy. While no kinase-based significant pCR associations
emerged, seven non-kinase purine-binding proteins had positive
associations with pCR, including GBP2, GBP5, RAC2, ATP6V1B2,
NEDD4L, LDHB, and KPNA4. Validation using orthogonal mRNA
datasets showed that a composite purine-binding protein signa-
ture predicted chemotherapy responsiveness and favorable TNBC
outcomes. Significant correlations were also observed with IFN
response pathways, immune scores, and immune checkpoint levels
(PD-L1). Single-cell RNA sequencing identified GBP5 and RAC2
as T-cell associated. Thus, KIPA is a novel biomarker discovery
tool with potential for defining immunoreactive and chemotherapy
sensitive tumor types.

patients with a lower chance of response who can be better served by a clinical
trial than an inadequate standard of care. For patients with a high chance of
pCR, investigations could focus on developing lower toxicity regimens.

Mass spectrometry (MS)-based proteomics has successfully been employed
to identify proteins and phosphoproteins differentially expressed in different
breast cancer subtypes (9, 10). To increase the sensitivity and accuracy of pro-
filing protein kinases as drug targets, multiplexed kinase inhibitor–conjugated
beads (MIB) combined with quantitative MS have been used for biomarker
discovery. For example, the MIB technique has been used to examine kinome
reprogramming in leukemia and TNBC after treatment with kinase inhibitors
(11, 12). Herein, we employ an optimized version of MIB called the kinase in-
hibitor pulldown assay (KIPA), based on nine kinase inhibitors relevant to both
breast cancer treatment and kinase class coverage (13). The original intent of
the project was to explore kinase expression in the setting of chemotherapy
resistance to identify therapeutic targets to improve outcomes. However, dur-
ing the investigation, unbiased data analysis revealed a much deeper source
of potential biomarkers because of the large number of non-kinase purine-
binding proteins (PBP) captured by the kinase inhibitor–conjugated bead
approach.

This study was based on biospecimens collected from two previously published
clinical trials (NCT02547987 and NCT02124902; ref. 14). Patients with clinical
stages II/III TNBC received six cycles of docetaxel and carboplatin neoadjuvant
chemotherapy before surgery (14). Microscaled proteogenomic profiling (15)
was previously conducted on optimal cutting temperature compound (OCT)-
embedded core needle biopsy samples collected before treatment from these
two trials (16). KIPAwas subsequently applied to the same sample set to identify
additional predictive biomarkers for chemotherapy response.

Materials and Methods
Data Collection
Snap-frozen OCT-embedded core needle biopsies used in this study were part
of the Clinical Proteomic Tumor Analysis Consortium (CPTAC)-TNBC study

(14, 16), in which eligible patients including premenopausal or postmenopausal
women≥ 18 years oldwith clinical stages II/III ER-negative andHER2-negative
(0 or 1+ by IHC or FISH negative) invasive breast cancer were recruited. The
details of the clinical trials and proteogenomic studies can be found in previ-
ous publications (14, 16). The clinical trials were approved by the Institutional
Review Board at both participating sites, WashU and BCM, and written in-
formed consent from the patients was obtained. The studies were conducted
in accordance with recognized ethical guidelines and followed the Declaration
of Helsinki and Good Clinical Practice guidelines. In this study, 43 samples
were successfully used for KIPA, which required a separate detergent-based
native protein extraction approach (see below). The corresponding treatment
response information (including pCR status and residual cancer burden class—
RCB), molecular subtype information, RNA sequencing (RNA-seq), tandem
mass tag (TMT)-based proteomics and phosphoproteomics data were obtained
from the CPTAC-TNBC study (16). Protein-based and RNA-based immune
score and multigene proliferation score (MGPS) were calculated as described
previously (16). Programmed death 1 ligand 1 (PD-L1) levels from IHC staining
were also described previously, as was the IHC protocol and pathology slide
scoring method (16).

The primary validation dataset was derived from the BrighTNess phase III ran-
domized TNBC clinical trial (17). Other datasets used for validation comprised
of Silver and colleagues dataset (18), METABRIC (19), and TCGA datasets (20).
The gene expression profiles of the BrighTNess dataset (GSE164458) and the
Silver and colleagues dataset (GSE18864) was retrieved from the Gene Ex-
pression Omnibus (RRID:SCR_005012). Gene expression profiles and clinical
outcome data of the METABRIC and TCGA datasets were accessed online
using cBioPortal (RRID:SCR_014555).

Kinobeads Preparation
Kinase inhibitors were conjugated with local laboratory generated ECH
Sepharose 4B using the carbodiimide coupling method (12, 13). Briefly, nine
kinase inhibitors (Palbociclib, Crizotinib, GSK690693, AZD4547, CZC-8004,
Afatinib, FRAX597, Abemaciclib, and Axitinib; Supplementary Table S1) were
separately conjugated to homemade ECH Sepharose 4B via carbodiimide
coupling chemistry as described previously (12). ECH Sepharose 4B was
synthesized using conjugating 6-Aminohexanoic acid (Sigma) to cyanogen
bromide (CNBr)-activated Sepharose 4B (GE Healthcare). Each kinase in-
hibitor was dissolved in 50% dimethylformamide (DMF)/ethanol (EtOH) and
added to the ECH Sepharose 4B beads in the presence of 0.1 mol/L 1-ethyl-3-
(3-dimethylaminopropyl)carbodiimide and allowed to react overnight at 4°C
with rotation. After coupling, the unreacted groups were inactivated with
ethanolamine. Subsequently, beads were washed with 0.1 mol/L Tris-HCl, pH
8.3 with 500mmol/LNaCl and 0.1mol/L acetate, pH 4.0with 500mmol/LNaCl
and stored in 20% ethanol at 4°C in the dark.

Kinase Enrichment by Kinobeads Precipitation
Native protein lysates were extracted as described previously (15). OCT-
embedded biopsy samples were washed with PBS three times and 100 μL of
native protein lysis buffer [50mmol/LHEPES (pH 7.5), 150mmol/LNaCl, 0.5%
Triton X-100, 1 mmol/L Ethylenediaminetetraacetic acid (EDTA), 1 mmol/L
ethylene glycol-bis(β-aminoethyl ether)-N,N,N′,N′-tetraacetic acid (EGTA),
10 mmol/L NaF, 2.5mmol/L Na3VO4, Protease inhibitor cocktail, Phosphatase
inhibitor cocktail] was added to the samples. Samples were incubated on ice for
10minutes and sonicated by the S220 Ultrasonicator for 2minutes (Covaris).
Protein concentration was measured by Protein Assay (Bio-Rad).
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KIPA was performed as described previously (13). For each KIPA pulldown,
50 μg of native protein lysate was mixed with 10 μL of kinobeads previously
equilibrated in lysis buffer for 1 hour at 4°C with rotation. Kinobeads and their
bound proteins were pulled down by centrifugation at 600 × g for 30 sec-
onds, and the supernatant containing unbound proteins was aspirated. The
beads were washed twice with 400 μL buffer containing 50 mmol/L HEPES
(pH 7.5), 600 mmol/L NaCl, 1 mmol/L EDTA, 1 mmol/L EGTA with 0.5% Tri-
ton X-100, and twice with the same buffer without Triton X-100 followed by two
washes with water. After final wash, bound proteins were digested with trypsin
overnight at 37°C. To remove the remaining detergent from the lysis buffer prior
to MS analysis, the digested peptide mixture was processed using a HiPPR De-
tergent Removal Kit (Thermo Fisher Scientific) according to themanufacturer’s
instructions and dried using a speed-vac prior to MS analysis.

Proteomic Data Acquisition and Processing
KIPA samples were analyzed by MS as described previously (15). Peptides
generated from KIPA were analyzed using an Orbitrap Fusion Lumos mass
spectrometer coupled with an EASY-nLC1200 system (Thermo Fisher Sci-
entific). One-third of the KIPA sample was loaded onto a trap column
(150 μm× 2 cm, particle size 1.9 μm) with a maximum pressure of 280 bar
using Solvent A (0.1% formic acid in water) and then separated on a silica mi-
crocolumn (150 μm× 5 cm, particle size, 1.9μm) with a gradient of 4%–28%
mobile phase B (90% acetonitrile and 0.1% formic acid) at a flow rate of 750 nL
per minute for 75 minutes.

The data-dependent acquisition (DDA) mode was used. For DDA, a precursor
scan between m/z 300 to 1,200 was performed in the Orbitrap at 120,000 reso-
lution at 200 m/z. The 20 most intense ions were isolated by quadrupole with
a 2 m/z window, and fragmented by higher energy collisional dissociation with
a normalized collision energy of 32%, and detected by ion trap with a rapid
scan rate. The automatic gain control targets were 5 × 105 ions with a maxi-
mum injection time of 50 ms for precursor scans and 104 ions with a maximum
injection time of 50 ms for MS2 scans. The dynamic exclusion time was 20 sec-
onds (±7 ppm). For relative quantification, the raw spectra were converted to
the mgf format using Proteome Discoverer 2.0 software (Thermo Fisher Scien-
tific, RRID:SCR_014477) and then imported to Skyline (21) along with the raw
data file.

Identification of Differential Proteins from the KIPA
Differential proteins were identified with the KIPA data using Wilcoxon rank-
sum tests. Missing values (NA) were imputed as 0 during analysis. Proteins
with log10(fold change) > 1 and P value < 0.05 were taken as differential
proteins between pCR and non-pCR samples. The PBP signature score was
calculated as the average level of seven signature genes (GBP2, GBP5, RAC2,
ATP6V1B2, NEDD4L, LDHB, and KPNA4) measured by different platforms
(KIPA, proteomics, or RNA-seq).

The number of publications corresponding to each signature protein was per-
formed using R package RISmed (22). The peer-reviewed publications were
extracted from the PubMed database, and each gene symbol was searched with
the keywords “breast cancer” and “chemotherapy” to find relevant publications.
These tasks were performed in an in-house R script, where the final query for
this publication was performed on April 3, 2023.

R package “ggplot2” (23) and “ComplexHeatmap” (24) were applied to generate
volcano plots and heat maps, respectively, to visualize the identified differential
proteins.

Overrepresentation Analysis and Gene Set
Enrichment Analysis
Total 2,641 proteins detected by the KIPA data were subjected to Gene Ontol-
ogy (GO) overrepresentation analysis (ORA) to identify enriched molecular
function (MF) terms using the R package “WebGestaltR” (25).

Gene set enrichment analysis (GSEA, RRID:SCR_003199) was performed us-
ing publicly available software (GSEA version 4.2; ref. 26). The input of GSEA
is a ranked list of signed −log10 P values from Pearson correlation between the
KIPA-based PBP signature score and the genes measured by either the pro-
teomics or RNA-seq in the CPTAC-TNBC dataset. The Hallmark gene sets
within the Molecular Signatures Database (MSigDB) were used for GSEA. A
FDR of 0.05 was utilized to define the statistical significance of GSEA in this
study.

Statistical and Validation Analysis
The protein and mRNA levels of seven signature genes were compared with
a correlation matrix using the Spearman method. A correlation matrix was
generated using the R package “corrplot” (27).

ROC curve analysis was applied to RNA-seq data of tumor samples from the
BrighTNess dataset. The R package “pROC” (28) was used to draw the ROC
curves and calculate the AUC.

Survival analysis was performed using the R package “survival” (29) to evalu-
ate the prognostic effects of the prioritized genes. Disease-specific survival was
defined as the time from the date of diagnosis to the date of death due to breast
cancer. The Cox proportional hazards regression model (Wald test) was used
to calculate univariate and multivariate hazard ratios.

The expression patterns of seven signature genes in different annotated cell
typeswere generated fromapublic single-cell RNA-seq dataset (30). The figures
were generated from the Broad Institute Single Cell portal at https://singlecell.
broadinstitute.org/single_cell/study/SCP1039.

Data Availability
The KIPA data generated in this study are available upon request. The data
used for validation purposes in this study were obtained fromGene Expression
Omnibus (RRID:SCR_005012) at GSE164458 and GSE18864.

Results
Sample Overview and KIPAWorkflow
The CPTAC-TNBC study collected snap-frozen OCT-embedded core nee-
dle biopsies from consented patients with clinical stages II/III TNBC
(NCT02547987 and NCT02124902; refs. 14, 16). The patients were treated with
six cycles of neoadjuvant docetaxel and carboplatin combination chemotherapy
(14, 16). The previously described BioTExt (Biopsy Trifecta Extraction)method
(15) was used to process the samples and profile the proteogenomic landscape of
the biopsy samples (16). In addition to the proteins detected by the microscaled
proteogenomic methods, KIPAwas developed to specifically profile the human
kinome and associated proteins from clinical tumor lysates (13). To identify
kinases and kinase-associated proteins whose abundance can predict neoadju-
vant chemotherapy response, KIPAs were performed using 43 baseline samples
(collected before treatment) from the CPTAC-TNBC study (Supplementary
Tables S2 and S3). Homemade kinobeads containing nine kinase inhibitor–
conjugated beads (Palbociclib, Crizotinib, GSK690693, AZD4547, CZC-8004,

AACRJournals.org Cancer Res Commun; 3(8) August 2023 1553

D
ow

nloaded from
 http://aacrjournals.org/cancerrescom

m
un/article-pdf/3/8/1551/3356066/crc-22-0501.pdf by W

ashington U
niversity St Louis user on 13 February 2024

https://singlecell.broadinstitute.org/single_cell/study/SCP1039


Wang et al.

Afatinib, FRAX597, Abemaciclib, andAxitinib)were used to capture the critical
druggable kinases and their binding proteins. Enriched proteins were identified
and quantified using quantitative MS for further analysis (Fig. 1A and B).

From the 43 samples, KIPA identified a total of 2,641 proteins, most of which
were also identified by the RNA-seq and global proteomics of the same samples
(Supplementary Fig. S1A). A total of 191 of 2,641 proteins identified (7.23%) be-
long to the human kinase family (Fig. 1C). Most of the proteins detected (2,450,
92.77%) were classified as non-kinase proteins (Fig. 1C; Supplementary Table
S4). This finding is not surprising because it has been reported that in addition
to kinases, kinobeads can also bind some ATPs and PBPs, such as chaperones,
helicases, adenosine triphosphatases (ATPase), and guanosine triphosphatase
(GTPase; ref. 31). To better understand the biological functions of all the pro-
teins identified, 2,641 proteins were subjected to GOORA (Fig. 1D). In addition
to protein serine/threonine kinases, proteins were enriched in MF terms in-
cludingATPase activity and nucleoside/guanyl binding (Fig. 1D). Hence, kinase
inhibitor–conjugated beads could capture not only targetable human kinases,
but also many non-kinases that either bind to kinases or directly bind to ki-
nobeads.We therefore focused on the prognostic implications of all the proteins
and aimed to prioritize robust biomarkers of chemotherapy response.

Identification of PBP Signature Associated
with pCR Samples
To identify predictive biomarkers for neoadjuvant chemotherapy response,
Wilcoxon rank-sum tests were performed on the KIPA data (Supplementary
Table S5). Only four kinases were identified to be upregulated in pCR sam-
ples and there were no kinases upregulated in non-pCR samples (P < 0.05;
Supplementary Fig. S1B). Among all the proteins detected by KIPA, 43 differ-
ential proteins were identified (P < 0.05; Fig. 2A). A total of 31 proteins were
significantly upregulated and 12 proteins were downregulated in pCR samples
(Fig. 2A). Examples such as GALC (Galactosylceramidase) and LEMD2 (LEM
domain nuclear envelope protein 2) were significantly higher in non-pCR sam-
ples. In contrast, GBP5 (guanylate binding protein 5), which belongs to the
GTPase family, was the most significantly elevated protein in pCR samples
(Fig. 2A). Compared with the proteogenomics study previously applied to the
same set of biopsy samples (16), most differential proteins from the KIPA anal-
ysis were not identified as significant (P < 0.05) by either TMT-based global
proteomics or RNA-seq data, although the trends for most gene products were
consistent (Supplementary Fig. S2A). This finding suggests that besides stan-
dard proteogenomic profiling, our kinase inhibitor bead-based enrichment
method provides a useful orthogonal platform for biomarker discovery studies.

To identify a protein signature associated with chemotherapy sensitivity, the
most significantly upregulated proteins in pCR samples were prioritized [P <

0.01, including GBP2, GBP5, RAC2 (Rac Family Small GTPase 2), ATP6V1B2,
NEDD4L, LDHB, and KPNA4]. The signature includes seven non-kinase pro-
teins, among which GBP2, GBP5, and RAC2 are GTPases and bind to GTP.
ATP6V1B2 (ATPase H+ Transporting V1 Subunit B2) is a component of the
vacuolar ATPase enzyme complex and binds to ATP (32). NEDD4 L (NEDD4
like E3 ubiquitin protein ligase) is an E3 ubiquitin ligase and binds to ATP
through the process of ubiquitination (33). LDHB (lactate dehydrogenase B)
is an enzyme that catalyzes the conversion of pyruvate to lactate, during which
LDHB binds to NADH and NAD+ (34). KPNA4 (Karyopherin subunit α4, or
importin-α3) forms a heterodimer with importin β (KPNB1) and is responsi-
ble for nuclear transportation of nuclear localization signals (NLS)-containing
proteins (35). After nuclear transportation, RAN (a GTPase) rapidly binds to

the importin β to dissociate the complex, releasing the transported protein and
recycling of the importins back to the cytoplasm (35). Therefore, KPNA4 in-
directly binds GTP through the RAN GTPase. Because GTP, ATP, and NAD+
are all purine-based nucleotides, we termed this seven-member signature PBP
signature. To investigate the novelty of this PBP signature, the number of
publications corresponding to each signature protein related to chemotherapy
treatments in breast cancer was obtained. The peer-reviewed publications were
extracted from the PubMed database, and each gene symbol was searched with
the keywords “chemotherapy” and “breast cancer” using R package RISmed.
LDHB has five, NEDDL4 has two, GBP5, GBP2, and RAC2 have one citation
each, while KPNA4 andATP6V1B2 have no citations (Supplementary Fig. S2B).

The KIPA-based PBP signature score, which was derived from the average level
of seven proteins measured by the KIPA, showed a significant enrichment in
pCR samples and a partially concordant pattern with the protein and mRNA
expression levels of each individual gene (Fig. 2B). Despite the positive corre-
lations observed between protein and mRNA levels for seven signature genes
(Supplementary Fig. S2C), KIPA-based PBP signature scores were themost sig-
nificantly enriched in pCR samples (Wilcoxon test P = 5.5e-5) compared with
protein-based PBP signature scores (Wilcoxon test P= 0.07) andmRNA-based
PBP signature scores (Wilcoxon test P = 0.04; Supplementary Fig. S3).

To explore the pathways that were associated with the PBP signature score,
GSEAwas performed using a ranked list of signed−log10 P values fromPearson
correlation between the KIPA-based PBP signature scores and the expression
levels of all the genes (Fig. 3A–D). The significantly enriched protein-based
andmRNA-based pathways within the Hallmark gene sets were shown (FDR<

0.05; Fig. 3A and C). At both protein and mRNA levels, IFN gamma response
pathway is the most positively correlated pathway with the KIPA-based PBP
signature score (FDR = 0; Fig. 3A–D). The enrichment plots for IFN gamma
response pathway are shown in Fig. 3B and D. The leading-edge genes from
the Hallmark IFN gamma pathway also showed an enrichment in pCR samples
(Supplementary Fig. S4).

Validation of the PBP Signature in Predicting
Neoadjuvant Chemotherapy in TNBC
Independent datasets were deployed to validate the performance of the PBP
signature identified from the KIPA analysis in predicting chemotherapy re-
sponse of patients with TNBC, particularly those who received the regimen
of taxanes and carboplatin combination. The BrighTNess cohort is a phase
III, randomized, double-blind, placebo-controlled trial that recruited patients
with stage II/III TNBC (17). Patients were randomized to receive three differ-
ent neoadjuvant regimens: paclitaxel plus carboplatin plus veliparib (Arm A),
paclitaxel plus carboplatin (Arm B), or paclitaxel only (Arm C). The tumor
samples were collected before the neoadjuvant treatment and RNA-seq anal-
ysis was performed for each sample (36). The addition of veliparib in Arm
A did not increase the proportion of patients who achieved pCR (17). There-
fore, Arm A and Arm B were combined (n = 359) to investigate the potential
biomarkers initially identified from theKIPA analysis. By performingWilcoxon
rank-sum tests between pCR and residual disease (RD) groups, all 24,031 genes
were ranked on the basis of the signed−log10 P-value (Fig. 4A). A positive value
of a certain gene indicates its upregulated expression in pCR samples, whereas
a negative value represents downregulation in pCR samples.

A total of 42 of the 43 differential genes from the KIPA analysis were also de-
tected by RNA-seq of the BrighTNess dataset and are shown as colored dots in

1554 Cancer Res Commun; 3(8) August 2023 https://doi.org/10.1158/2767-9764.CRC-22-0501 | CANCER RESEARCH COMMUNICATIONS

D
ow

nloaded from
 http://aacrjournals.org/cancerrescom

m
un/article-pdf/3/8/1551/3356066/crc-22-0501.pdf by W

ashington U
niversity St Louis user on 13 February 2024



Purine-binding Protein–based TNBC pCR Signature

N
TN

00
7

N
TN

01
4

N
TN

02
3

N
TN

02
5

N
TN

03
1

N
TN

04
6

N
TN

05
0

N
TN

05
8

N
TN

06
0

N
TN

08
3

N
TN

03
9

H
36

96
0−

00
2

H
36

96
0−

01
9

H
36

96
0−

01
8

N
TN

01
2

N
TN

01
7

N
TN

02
9

N
TN

03
8

N
TN

04
0

N
TN

05
2

N
TN

06
3

N
TN

06
9

N
TN

07
4

N
TN

08
0

N
TN

08
1

N
TN

08
4

N
TN

08
5

N
TN

08
7

H
36

96
0−

00
8

N
TN

02
1

N
TN

02
2

N
TN

03
3

N
TN

04
2

N
TN

04
9

N
TN

05
7

N
TN

05
6

N
TN

06
2

N
TN

08
9

H
36

96
0−

02
3

H
36

96
0−

00
9

N
TN

00
6

N
TN

02
0

N
TN

07
6

UNS (Unspecified)

A

D
212

146

133

132

128

123

118

114

99

95

85

59

52

50

45

45

38

36

23

22ADP binding (n=39)
tau protein binding (n=45)

translation factor activity, RNA binding (n=87)
double−stranded RNA binding (n=76)

unfolded protein binding (n=118)
oxidoreductase activity, acting on NAD(P)H (n=106)

structural constituent of cytoskeleton (n=101)
helicase activity (n=150)

extracellular matrix structural constituent (n=158)
mRNA binding (n=233)

structural constituent of ribosome (n=156)
ubiquitin−like protein ligase binding (n=298)

GTPase activity (n=293)
actin binding (n=419)

protein serine/threonine kinase activity (n=449)
cofactor binding (n=492)

guanyl nucleotide binding (n=390)
nucleoside binding (n=384)

ATPase activity (n=438)
cell adhesion molecule binding (n=478)

0 2 4 6 8 10
Percent (%)

G
O

 te
rm

 (M
ol

ec
ul

ar
 F

un
ct

io
n)

0

0.4e-07

0.8e-07

1.2e-07

1.6e-07
P value

Protein count
in each pathway

50
100
150
200

Top 20 enriched functions
(Total protein detected by KIPA = 2,641)

B

REAGENT
9 inhibitor bead 

cocktail

+

LYSATE
50μg lysate

PROTOCOL
1-hour batch binding
quick washes
in-solution digest/clean-up

Mass Spectrometry
75-minute DDA/PRM hybrid

pCR
Yes
No

RCB class
0
I
II
III

Tumor Content
>=45%

Data Availability
Completed
NA

PAM50 subtype
Basal
HER2-enriched
LumB
Normal

Lehmann TNBC subtype
BL1 (Basal-like 1)
BL2 (Basal-like 2)
IM (Immunomodulatory)
LAR (Luminal androgen receptor)
M (Mesenchymal)
MSL (Mesenchymal stem-like)

KIPA
RNA-seq
TMT-based proteomics
PAM50 subtype
Lehmann TNBC subtype

Tumor Content
RCB class
pCR

C

Non-Kinase
2,450 (92.77%)

Kinase
191 (7.23%)

KI-L
9 (0.34%)

KI-M
29 (1.10%)

KI-P
148 (5.60%)

KI-X
5 (0.19%)
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FIGURE 2 Differential protein analysis between pCR and non-pCR samples. A, Volcano plot shows results from differential analysis between pCR
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Fig. 4A. Six of seven PBP signature genes were significantly upregulated in pCR
samples in the BrighTNess dataset (P < 0.05; Fig. 4A). Among seven signature
genes, GBP5 was the most significantly upregulated genes in pCR samples and
ranked 22 of all 24,031 examined genes (Fig. 4A). Although six of seven sig-

nature genes show a significant increase in pCR samples (Supplementary Fig.
S5A), the enrichment of mRNA-based PBP signature score (derived from the
average mRNA level of seven genes) in pCR samples was the most significant
(Wilcoxon test P = 2.1e-7; Fig. 4B). ROC curve analysis revealed that the area
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FIGURE 3 GSEA of the PBP signature-correlated genes. A, Bar plot shows the enriched Hallmark gene sets (FDR < 0.05) from GSEA of the
KIPA-based PBP signature score-correlated genes at the protein levels. GSEA input was a ranked list of signed −log10 P-values from Pearson
correlation between the KIPA-based PBP signature score and all the genes measured by the global proteomics in the CPTAC-TNBC dataset. Pathways
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the enriched Hallmark gene sets (FDR < 0.05) from GSEA of the KIPA-based PBP signature score-correlated genes at the mRNA levels. GSEA input
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under theROCcurve (AUC) for the PBP signaturewas 0.66, outperforming any
individual signature gene (Fig. 4C). This finding indicates that at the mRNA
level, the PBP signature is a modest biomarker for predicting chemotherapy
response in the BrighTNess mRNA dataset.

Another clinical trial where a modest number of patients with TNBC
(n = 24) were treated with single-agent cisplatin neoadjuvant therapy was also
used as a validation set (18). The mRNA-based PBP signature scores signif-
icantly increased with the increasing clinical responses (i.e., increases from
progressive disease to stable disease, to partial response, to complete response;
Jonckheere–Terpstra test P = 0.02; Supplementary Fig. S5B).

Evaluation of Prognostic Effects of Differential Proteins
in TNBC Subtype
To investigate the long-term effects of predictive biomarkers on the prognosis of
patients with TNBC, the METABRIC dataset was used (19). The METABRIC
dataset consists of nearly 2,000 breast cancer samples with a median 10-year
follow-up, detailed clinical information, and genome-wide gene expression
data (19). Basal-like and claudin-low breast cancer samples (n= 398) were used
to evaluate the prognostic effects of the PBP signature from the KIPA analysis.
A total of 398 samples were stratified on the basis of the median expression of
each gene and survival analysis was performed to obtain the P value and HR.
HR > 1 indicates that patients with higher expression of a certain gene have a
worse prognosis, and HR < 1 indicates a better prognosis.

In the univariate analysis, four of seven signature genes (GBP5, RAC2, GBP2,
and ATP6V1B2) showed significant prognostic effects (P < 0.05; Fig. 5A;
Supplementary Fig. S6). The multivariate survival analysis demonstrated that
higher mRNA levels of GBP5 and GBP2 were significantly correlated with bet-
ter disease-specific survival (Fig. 5A). Interestingly, the higher mRNA-based
PBP signature scores were associated with favorable clinical outcomes from
both univariate andmultivariate analysis (Fig. 5A and B). In addition, in TCGA
pan-cancer dataset, although the PBP signature overall was not prognostic,
the higher expression levels of individual signature gene members, such as
GBP5 and ATP6V1B2, were associated with better disease-specific survival
(Supplementary Fig. S7).

Combined with previous validation with the BrighTNess and the Silver and
colleagues dataset (Fig. 4; Supplementary Fig. S5), we concluded that high
mRNA-based PBP signature scores in TNBC samples were associated with
chemotherapy response and favorable clinical outcomes.

Relationship Between the PBP Signature Scores,
Immune Scores, and PD-L1 Levels
Because the PBP signature scores were highly correlated with the IFN gamma
response pathway, the association between the PBP signature and immune
scores derived from proteomics and RNA-seq data was further investigated
with the CPTAC-TNBC dataset (Fig. 6). The KIPA-based PBP signature scores
were positively correlated with mRNA-based immune scores derived from
ESTIMATE (Pearson R = 0.48, P = 2.48e-3), Cibersort (Pearson R = 0.50,
P = 1.26e-3), and xCell (Pearson R = 0.44, P = 5.22e-3; Fig. 6A). In addition,
the KIPA-based PBP signature scores were highly positively correlated with
protein-derived immune stimulatory scores (Pearson R = 0.60, P = 2.13e-5),
but not with immune inhibitory scores (Pearson R = 0.21, P = 0.18; Fig. 6B).
In contrast, there were no significant correlations between the signature levels
andMGPSs, indicating a low connection between the PBP signature and tumor
proliferation pathways (Supplementary Fig. S8A).

IHC staining of tumor sample slides revealed a combined positive score (CPS)
of PD-L1 for each sample. A significant positive correlation between PD-L1 CPS
values and the KIPA-based PBP signature scores was observed (Pearson R =
0.46, P = 4.36e-3; Fig. 6C). Similar correlations were observed between the
PBP signature scores and PD-L1 phosphoprotein levels measured by phospho-
proteomics (Pearson R = 0.59, P = 1.62e-4; Fig. 6D). These findings imply a
potential connection to the potential benefits of immune checkpoint inhibitor
treatment recently introduced for patients with TNBC. Combined with single-
cell RNA-seq data previously conducted in 26 primary breast tumors (30), seven
PBP signature genes show distinct expression patterns in different annotated
cell types (Supplementary Fig. S8B and S8C). While some genes such as GBP5
and RAC2 are predominantly expressed in immune cells (T cells and myeloid
cells), other signature genes exhibited universal expression in both tumor cells
and immune or stromal compartments (Supplementary Fig. S8C).

Discussion
Here, we describe the results from our recently established KIPA approach in
clinical tumor samples to investigate predictive biomarkers for neoadjuvant
chemotherapy response in TNBC. KIPA identified more than 300 human ki-
nases by deploying a cocktail of nine experimental and FDA-approved kinase
inhibitors conjugated to beads for enrichment, followed by quantitative MS
(13). The intended targets of each kinase inhibitor were successfully captured
and quantified in our previous experiments (13). The genesis of this article is
that the KIPA pulldownmethod also detected many non-kinase proteins, most
commonly purine-binding proteins such as ATPases and GTPases. Biomarker
discovery analysis was performed by comparing tumors collected from pa-
tients who achieved a pCR after neoadjuvant docetaxel- and carboplatin-based
chemotherapy to those who did not (14). While the objective of discover-
ing druggable kinases in chemotherapy-resistant non–pCR-associated tumors
was not met, the KIPA platform generated unexpected relationships be-
tween a spectrum of other non-kinase PBPs and pCR. These chemotherapy
response-associated proteins prioritized by the KIPA platform might not be
discovered using standard proteogenomic tools (TMT-based global proteomics
and RNA-seq), either because KIPA allowed detection and quantification of
low-abundance purine-binding proteins by enrichment or because the rela-
tionships with pCR occurred at the posttranscriptional level and therefore not
detectable by RNA-seq. For example, the very weak validation of KPNA4 in
RNA-seq data may be because its role in DNA repair is posttranscriptional, and
ultimately protein-level validation will be required (37).

Among all protein candidates, a pCR-associated purine-binding protein sig-
nature was the core discovery described herein. This signature includes six
PBPs (GBP2, GBP5, RAC2, ATP6V1B2, NEDD4L, and LDHB) and KPNA4
that likely binds to the KIPA beads indirectly via the RAN GTPase. Some
of the signature proteins have already been reported to be associated with
chemotherapy sensitivity, including GBP2 (38), GBP5 (39), RAC2 (40), and
LDHB (41). The roles of the other three PBP signature proteins in predict-
ing chemotherapy response have yet to be investigated in breast cancer, but
a role is highly plausible. For example, KPNA4 (importin α3) is a subunit of
the karyopherin nuclear transportation machinery and forms the importin α/β
heterodimer (35). The multiple other karyopherin complex components, in-
cluding KPNB1, KPNA2, KPNA3, and RAN, were also detected by KIPA in
our study (Supplementary Table S3). Mechanistically, a recent MS study has re-
ported that KPNA4 assists the translocation of cytoplasmic transcription factor
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survival associated with the PBP signature and seven signature genes. HR and 95% confidence intervals were based on categorizing TNBC samples
using a median mRNA expression cutoff for each gene or the PBP signature score in the METABRIC dataset. Survival analysis was also performed for
clinical factors (lymph nodes number, tumor size, and tumor grade). Blue boxes indicate univariate analysis, and red boxes indicate multivariate
analysis. B, Kaplan–Meier curve shows disease-specific survival of TNBC samples from the METABRIC dataset. Samples were categorized into
mRNA-based PBP signature score high and low group based on the median cutoff.

CRIP1 into the nucleus along with the nuclear import of the BRCA2-RAD51
complex upon DNA damage (37). In contrast, ATP6V1B2 may play a role in
cell death in response to chemotherapy. V-ATPases maintain pH homeostasis
through lysosomal acidification andmodulate autophagy, cell invasion, and cell
death (42).

GSEA indicated that the PBP signature correlated most strongly with IFN
gamma response–associated proteins. It is well established from previous pub-
lications that the IFN gamma pathway is elevated in pCR-associated samples
(16). GBP2 and GBP5 are IFN-inducible GTPases involved in a broad spectrum
of innate immune functions against intracellular pathogens (43, 44). RAC2
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activates Th1-specific signaling and IFN gamma gene expression (45). NEDD4
L has been reported to promote type I IFN production in response to the virus
by catalyzing ubiquitination of the cysteines in TRAF3 (TNF receptor associ-
ated factor 3; ref. 46). Single-cell RNA-seq analysis from a publicly available
database (30) showed that some of the PBP signature genes are predominantly
expressed in immune cells (GBP5 and RAC2), while other genes show univer-
sal expression patterns across cell types. Thus, we hypothesize that the elevated

levels of the PBP signature in pCR samples are driven by both the cancer cells
and the immune or stromal compartments.

Compared with other breast cancer subtypes, TNBC has the highest incidence
of patients with tumor-infiltrating lymphocytes (TIL; ref. 47). After patients
with TNBC receive neoadjuvant chemotherapy, the presence of TILs is asso-
ciated with pCR, improved disease-free and overall survival (48, 49). PD-L1 is
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expressed in approximately 30% of patients with breast cancer, and its expres-
sion is positively associated with triple-negative status and high levels of TILs
(50). Recent promising results of the KEYNOTE-522 trial led to the approval of
the programmed cell death protein 1 (PD1)-targeting antibody pembrolizumab
for neoadjuvant TNBC treatment (3). Pembrolizumab in combination with
chemotherapy significantly increased event-free survival compared with
chemotherapy alone (5). The high correlation between the PBP signature lev-
els and the PD-L1 IHC and phosphoprotein levels implies the broader role
of the PBP signature in predicting not just chemotherapy sensitivity but also
immunotherapy sensitivity in TNBC. These findings will be worth testing in
prospective TNBC cohorts where patients receive the current standard-of-care
of chemotherapy plus immune checkpoint antibodies to further validate the
approach.

In conclusion, low sample requirements (<50 μg protein lysate) and the short
processing time (complete within 2 days) make KIPA highly applicable for
efficient clinical investigation (13). KIPA reveals an unexpectedly rich source
of PBPs as chemotherapy response biomarkers for distinguishing TNBC tu-
mors that will or will not respond to chemotherapy. For patients with low
PBP signature scores and therefore low pCR probability, treatment escalation
with investigational drugs may be appropriate. For patients with high scores,
treatment de-escalation could be considered. For example, in the presence
of an immune checkpoint inhibitor, it may be possible to reduce the num-
ber of chemotherapy agents used to treat TNBC, which currently includes
doxorubicin, cyclophosphamide, carboplatin, and a taxane.
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