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The oral selective oestrogen receptor degrader (SERD)
AZD9496 is comparable to fulvestrant in antagonising ER and
circumventing endocrine resistance
Agostina Nardone1,2, Hazel Weir3, Oona Delpuech3, Henry Brown3, Carmine De Angelis1, Maria Letizia Cataldo1, Xiaoyong Fu1,
Martin J. Shea1, Tamika Mitchell1, Jamunarani Veeraraghavan1, Chandandeep Nagi1,4, Mark Pilling5, Mothaffar F. Rimawi6,
Meghana Trivedi1,6,7, Susan G. Hilsenbeck1, Gary C. Chamness1, Rinath Jeselsohn2, C. Kent Osborne1,4,6 and Rachel Schiff1,4,6

BACKGROUND: The oestrogen receptor (ER) is an important therapeutic target in ER-positive (ER+) breast cancer. The selective ER
degrader (SERD), fulvestrant, is effective in patients with metastatic breast cancer, but its intramuscular route of administration and
low bioavailability are major clinical limitations.
METHODS: Here, we studied the pharmacology of a new oral SERD, AZD9496, in a panel of in vitro and in vivo endocrine-sensitive
and -resistant breast cancer models.
RESULTS: In endocrine-sensitive models, AZD9496 inhibited cell growth and blocked ER activity in the presence or absence of
oestrogen. In vivo, in the presence of oestrogen, short-term AZD9496 treatment, like fulvestrant, resulted in tumour growth
inhibition and reduced expression of ER-dependent genes. AZD9496 inhibited cell growth in oestrogen deprivation-resistant and
tamoxifen-resistant cell lines and xenograft models that retain ER expression. AZD9496 effectively reduced ER levels and ER-
induced transcription. Expression analysis of short-term treated tumours showed that AZD9496 potently inhibited classic
oestrogen-induced gene transcription, while simultaneously increasing expression of genes negatively regulated by ER, including
genes potentially involved in escape pathways of endocrine resistance.
CONCLUSIONS: These data suggest that AZD9496 is a potent anti-oestrogen that antagonises and degrades ER with anti-tumour
activity in both endocrine-sensitive and endocrine-resistant models.
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Oestrogen receptor alpha (ER) and its ligand oestrogen (E2) are
important drivers of breast cancer initiation and progression. Over
two-thirds of breast cancers express the ER transcription factor,
and in most ER-positive (ER+) tumours, ER remains a key driver
and a therapeutic target even after development of resistance to
initial endocrine therapy1. Endocrine therapies, aiming to reduce
ER activity, encompass selective ER modulators (SERMs) such as
tamoxifen which bind to ER and modulate its functions; strategies
that systemically reduce E2 level in order to deprive the receptor
of its ligand using aromatase inhibitors (AIs) or ovarian ablation;
and selective ER degraders (SERDs) such as fulvestrant which
function as more complete antagonists and degrade ER protein.
Although endocrine therapy is highly effective, intrinsic and
acquired resistance are still common in both early and advanced
settings, and in the metastatic stage almost all patients who
initially respond to the therapy eventually progress and succumb
to the disease2.
Fulvestrant is the first and only SERD that has been clinically

approved for the treatment of postmenopausal patients with ER+

metastatic breast cancer after progression on tamoxifen or AIs. A
number of studies have shown that fulvestrant treatment in
patients was unable to achieve complete ER degradation3,4.
Although it is possible that doses higher than 500mg of
fulvestrant may achieve better ER degradation, its pharmacody-
namics and intramuscular route of administration limit the
amount of fulvestrant that can be given to patients5,6. Therefore,
there is a compelling clinical need for oral SERDs with higher
bioavailability, increased receptor degradation capability,
enhanced antagonist activity, and potential use in premenopausal
patients who have high oestrogen levels.
AZD9496 is an oral SERD, and it has been selected by direct

screening of drug-like ER ligands7. AZD9496 has been shown to
potently antagonise and degrade ER in preclinical studies with
MCF7 ER+ breast cancer cell line and xenograft models as well as
in patient-derived xenografts harbouring an ESR1 mutation7–9.
Moreover, combining an inhibitor of the phosphoinositide 3-
kinase (PI3K) pathway or of cyclin-dependent kinase-4/6 (CDK4/6)
with AZD9496 led to an enhanced tumour inhibitory effect8. More
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recently, a phase I clinical trial of AZD9496 was reported, and
AZD9496 was well tolerated and had an acceptable safety
profile10. In addition, a number of heavily pre-treated patients
experienced prolonged disease stabilisation10. Currently, there is
an ongoing open-label, randomised, multicentre window-of-
opportunity pharmacodynamics study (NCT03236974) to compare
and evaluate the biological effects of AZD9496 versus fulvestrant.
In the present study, we have investigated the activity of

AZD9496 across a panel of endocrine-sensitive and -resistant
breast cancer cell lines and xenograft models and compared the
efficacy of AZD9496 with fulvestrant. We demonstrate that
AZD9496 robustly reduces ER levels and inhibits the growth of
both endocrine-resistant and -sensitive cell line models in vitro.
AZD9496 significantly delays ER-dependent endocrine-resistant
tumour growth in vivo. Importantly, when compared to fulves-
trant, AZD9496 exhibited overall similar inhibitory activity on ER
signalling and on growth of tumour cells and xenografts. Analysis
of endocrine-sensitive and -resistant xenograft tumours indicates
that AZD9496 antagonises ER regulation of transcription, including
E2-induced and -repressed genes involved in cell growth and
potentially in escape pathways of endocrine resistance.

MATERIALS AND METHODS
Cell lines, establishment of resistant lines, and reagents
MCF7 and T47D ER+ breast cancer cell lines and their
corresponding derivatives resistant to oestrogen deprivation or
tamoxifen (EDR and TamR, respectively) were grown as previously
described11,12. To establish fulvestrant resistance (FulR), MCF7 and
T47D parental cells were maintained continuously in the presence
of fulvestrant (10–7 M) for at least 6 months in phenol red-free
media in the presence of 10% charcoal-stripped (cs) foetal bovine
serum (FBS). Parental cells were cultured in Dulbecco's modified
Eagle's medium (600MPE and MDA-MB-415) or RPMI (T47D, MCF7,
and ZR75-1) media with 10% FBS and 1% penicillin/streptomycin
and glutamine. All cell lines were authenticated at the MD
Anderson Characterized Cell Line Core Facility and were tested to
be mycoplasma-free by MycoAlert™ Mycoplasma Detection Kit
(Lonza, Houston, TX). AZD9496 (AstraZeneca, UK) was dissolved in
dimethyl sulphoxide (DMSO). The 17ß oestradiol (E2), 4-hydroxy
tamoxifen (for all in vitro studies, from Sigma (St Louis, MO)), and
fulvestrant (AstraZeneca) were dissolved in ethanol. Tamoxifen
citrate (Sigma) was used for all in vivo treatments as previously
described13.

Cell growth assays
Parental and resistant cells were oestrogen-deprived (ED) in
phenol red-free medium containing 5% cs-FBS (ED-medium) for
72 h, then plated in 96-well plates in ED-medium for another 24 h
before beginning additional treatments. A reference plate was
fixed at day 0, and endocrine treatments of E2 (10–9 M), ED
(continued ED-medium), tamoxifen (10–7 M), fulvestrant (10–7 M, or
as indicated), or AZD9496 (10–7 M, or as indicated) were added.
Media were replaced after 3 days, and after 6 days plates were
fixed and stained with methylene blue (Sigma)14. The percentage
of growth was determined as previously described15 using the
formula [(cell number at day 6 – cell number at day 0) Treatment]/
[(cell number at day 6 – cell number at day 0) Control (DMSO or as
specified in figure legend)]. For all treatment groups, cells were
plated in quadruplicate.

Immunoblotting assays
Cells were plated in original media or in ED-medium following
by endocrine treatment for 48 h as indicated. Cells and
xenograft tissue were lysed and processed as previously
described16,17. Immunoblotting with the specific primary anti-
bodies was performed according to the manufacturer’s instruc-
tions. Primary antibodies used were: β-actin (Cell Signaling

Technology), ERα 6F11 (Abcam, Fremont, CA), and progesterone
receptor (PR) (Santa Cruz Biotechnology, Santa Cruz, CA).
Western blots were performed at least two independent times.
Images were acquired as previously described11,14 or by using
ChemiDoc Touch Imaging System and Image Lab software
(BioRad, Hercules, CA).

ERE-luciferase reporter assays
Cells after 3 days in ED-medium were transfected overnight with
oestrogen responsive element (ERE)–luciferase and β-
galactosidase constructs using X-treme GENE HP-DNA transfection
reagent (Invitrogen) in phenol red-free Opti-MEM reduced-serum
medium (HyClone, Logan, UT) as previously described18. Cells
were then treated for additional 24 h with ED, E2 (10–9 M), or 10%
FBS, plus tamoxifen (10–7 M), fulvestrant (10–7 M), or AZD9496
(10–7 M). Relative luciferase activity was determined and analysed
as previously described18.

Xenograft studies
All animal care was in accordance with institutional guidelines. All
studies were conducted using ovariectomised 5–6-week-old
athymic mice (Harlan Sprague Dawley, Madison, WI).

MCF7 parental study. MCF7 parental cells were injected into both
sides of mice supplemented with an oestrogen pellet as
previously described19. When one of the two tumours reached
200mm3, mice were randomised to six arms including: (i) continue
E2 plus vehicle, (ii) E2 plus fulvestrant (4 × 5mg/mouse in 10 days),
(iii) E2 plus AZD9496 (5 mg/kg daily), (iv) oestrogen deprivation
(ED) by removing E2 pellet plus vehicle, (v) ED plus fulvestrant, and
(vi) ED plus AZD9496. Tumours were harvested when the two
tumours reached 1000mm3 (E2 group) or after 8 days of
treatment.

MCF7 TamR model study. The MCF7 TamR xenograft tumours
were generated and maintained as previously described20. Mice
were pre-treated with tamoxifen for 48 h (500 µg subcuta-
neously (s.c.)) and transplanted on both sides with tumours
derived from two independent donors. When at least one of the
two tumours reached 200 mm3 in volume, mice were rando-
mised to continue tamoxifen (Tam) as control or stop tamoxifen
and switch to vehicle8, fulvestrant (5 mg/mouse once a week s.
c., as previously described21, with an extra dose in the first
week), or AZD9496 (0.5, 5, or 50 mg/kg by oral gavage daily).
Tumour volumes were measured weekly as previously
described13. Short-term treatment (10 days) was conducted for
biomarker analysis, and long-term treatment (until tumour
reached 1000 mm3) was conducted to assess progression-free
survival. All tumours were harvested 24 h post fulvestrant, and 4
h post vehicle or AZD9496.

MCF7 EDR study. The E2-stimulated MCF7 parental xenograft
tumours that were initially sensitive to ED resumed growth after
almost 1 year in the absence of E2. These tumours were then
transplanted into mice without E2 supplementation and grown for
several generations in order to stabilise an MCF7 EDR model. In
this study, mice bearing a unilateral 200mm3 MCF7 EDR
transplantable tumour were randomised to vehicle, fulvestrant
(5 mg/mouse), or AZD9496 (10 mg/kg). All tumours were har-
vested when tumours in the ED control arm reached 1000mm3 in
volume.

Immunohistochemistry (IHC)
Formalin-fixed, paraffin-embedded tumour sections were sub-
jected to immunohistochemical staining of ER as previously
described17. Tumours were scored by ER H-score (percentage of
positive cells × intensity of the staining) independently by two
observers (a pathologist and a researcher).
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RNA isolation, cDNA, and real-time PCR analysis
Total RNA was extracted, and reverse transcribed as previously
described22. Quantitative real-time PCR amplification conditions and
primers for ESR1, PGR, and β-actin have been described previously22.
The relative fold differences in gene expression were calculated by
the ΔΔCt method with β-actin as a normalisation control.

Targeted gene expression of xenograft tumours
Targeted gene expression was performed using a 48 × 48 or 96 ×
96 Fluidigm dynamic array (Fluidigm, San Francisco CA, USA) and

Taqman primers (Thermo Scientific, Waltham, MA). Following the
manufacturer’s instructions, 50 ng of total RNA from xenograft
tumours were reverse transcribed using a high-capacity comple-
mentary DNA (cDNA) reverse transcription kit (Thermo Scientific)
and pre-amplified with a Taqman PreAmp master mix (Thermo
Scientific) for 14 cycles with 45 selected ER target gene primers.
The Fluidigm Array was then primed and loaded on an IFC
Controller and quantitative PCR (qPCR) experiments were run on
the Biomark System, using the standard Default_10 min_HotStart
protocol or M96_default protocol for 48 × 48 or 96 × 96 chips,
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Fig. 1 AZD9496 is comparable to fulvestrant in endocrine-sensitive ER+ cells. a Cell growth assay of T47D, MCF7, ZR75-1, 600MPE, and MDA-
MB-415 parental cells treated for 6 days with different endocrine treatments. b Immunoblot for ER expression and signalling (PR) in MCF7 cells
in the presence of 5% cs-FBS (ED-medium, ED), ED+E2, or 10% FBS and two different concentrations 10–6 M (–6) and 10–7 M (–7) of fulvestrant
or AZD9496. cmRNA levels of progesterone receptor (PGR) in MCF7 cells were assessed using real-time quantitative PCR (RT qPCR). The mRNA
expression was normalised to the actin housekeeping gene, and expression levels are presented as –ΔΔCT compared with E2 control. d ERE-
luciferase activity assay in MCF7 cells treated by ED, ED+E2, or 10% FBS for 24 h. SEM are shown (n= 3); **p < 0.01; ***p < 0.001; ****p < 0.0001
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respectively. Data were collected and analysed using the Fluidigm
Real-Time PCR Analysis software to generate the Ct values. Gene
expression calculations were performed in Jmp®12.0.1, and data
represented in TIBCOTM Spotfire® 6.5.2. The Ct values of target
genes were normalised to the average of housekeeping genes.
The expression of each individual gene in each treatment group
was then normalised to its respective expression in the control
group to calculate log2 fold change in gene expression (negddCt):
the MCF7 TamR model (Fig. 4d) was compared to the tamoxifen
group, while the MCF7 endocrine-sensitive model (Fig. 2d) was
compared to the vehicle group in each E2 or ED condition.

Statistical analysis
Cell growth and in vitro RNA expression were analysed within
each E2-stimulated or endocrine therapy group using one- or two-
way analysis of variance (ANOVA) with the Bonferroni post hoc
test using GraphPad Prism version 6.05 (GraphPad, La Jolla, CA).
Error bars on plots represent ± standard error of the mean (SEM)
(Figs. 1, 3).
For the short-term (8 days) xenograft growth study of MCF7

parental (endocrine-sensitive cells) experiment (Fig. 2), tumour
sizes from the right and left side were summed to generate a
single measurement of tumour burden at each time point for each
mouse. For each endocrine treatment group (E2, ED), a mixed
general linear model was used to model the effect of drug (SERD)
treatment (categorical), time (continuous, days), and their inter-
action as fixed effects on tumour size. A random intercept was
used to account for the effect of the starting tumour size for each
mouse. Differences in tumour growth were realised as treatment-
specific slopes and tested by the interaction term. In the event
that the ‘treatment × time’ interaction effect was significant,
pairwise comparisons were used to identify the groups that differ.
The p values for the pairwise comparisons were adjusted by the
Holm method to account for multiple comparisons within the
endocrine treatment groups. For in vivo long-term TamR
xenograft growth studies (Fig. 4), the average size of both
tumours in each mouse was used for the statistical analysis. Time
to tumour progression (tumour tripling) was summarised with
Kaplan–Meier curves and compared by generalised Wilcoxon tests
followed by pairwise comparisons with p value adjustment to
compare the difference between treatments. Analyses and graphs
were prepared using R (version 3.3.1 and the survival package). ER
protein expression (H-score) after short- (Fig. 2b) or long-term
(Fig. 4f) treatments was tested by one- or two-way ANOVA using
GraphPad Prism (GraphPad). ER H-score for the short-term TamR
experiment, with multiple AZD9496 doses, was tested using the
‘Cuzick nonparametric test for trend’23 (Fig. 4b, c).
To generate the heat maps, statistical analysis was performed in

JMP software and SAS9.2. A two-sided pairwise t-test was
performed in JMP for the MCF7 endocrine-sensitive model (Fig. 2)
to identify genes significantly modulated upon treatment (Vehicle
versus AZD9496 or fulvestrant; and AZD9496 versus fulvestrant or
Vehicle) in each E2/ED condition. The gene expression analysis of
the MCF7 TamR model (Fig. 4) was executed in SAS9.2. A
generalised linear model with a random effect for mouse was
used, with the Kenward–Roger correction for degrees of freedom
to appropriately deal with a small amount of missing data.
Treatment was treated as a categorical variable. In order to take
into account left and right tumour replicate samples from animals,
a model where left/right as a fixed effect nested within animals
was used. Interaction terms in this two-way model were initially
explored but found to be non-significant. PGR missing values were
artificially replaced by values on the limit of detection in order to
be able to represent PGR down-regulation after treatment. All
main effects were tested, but only treatment comparisons were of
interest. Pairwise comparisons between all treatment levels were
calculated, therefore Tukey’s HSD (honestly significant difference)
adjusted p values are reported.

RESULTS
AZD9496 is comparable to fulvestrant in inhibiting cell growth and
reducing ER levels and activity in endocrine-sensitive cell line
models
We first explored the efficacy of AZD9496 in a panel of ER+
parental (endocrine-sensitive) breast cancer cell lines in compar-
ison with other endocrine therapies including fulvestrant. Cell
growth changes were assessed for T47D, MCF7, ZR75-1, 600MPE,
and MDA-MB-415 cells maintained in ED-medium and treated
with E2 (control), ED alone (to mimic an aromatase inhibitor), ED
plus tamoxifen, fulvestrant, or AZD9496. Compared to E2
treatment, endocrine therapy (ED, tamoxifen, fulvestrant, and
AZD9496) significantly inhibited the growth of all five parental cell
lines, although the degree of growth inhibition substantially
varied across cell lines with T47D being the most sensitive (80 to
100% inhibition by various endocrine therapies) and MDA-MB-415
the least sensitive (<50% inhibition by all endocrine therapies)
(Fig. 1a). Importantly, fulvestrant and AZD9496 exerted similar
degrees of growth inhibition in all parental lines tested, and both
were more potent compared to ED and tamoxifen in the two most
endocrine-sensitive models, T47D and MCF7.
We next used the MCF7 model to compare the efficacy of

AZD9496 and fulvestrant in reducing the protein levels of ER as
well as its downstream gene product PR under ED alone or in the
presence of oestrogen (10–9 M E2 or 10% FBS) (Fig. 1b). As
expected, due to ligand-dependent degradation of the receptor,
ER levels were markedly reduced in the presence of E2, compared
to ED or tamoxifen. AZD9496 and fulvestrant significantly
decreased ER levels, with greater degradation under ED conditions
(Fig. 1b). Moreover, both SERDs, but not tamoxifen, effectively
inhibited ER transcriptional activity as measured by messenger
RNA (mRNA) and protein levels of PR (Fig. 1b, c). A similar decrease
in ER transcriptional activity was observed by ERE-luciferase
reporter assay, although residual ER activity was observed with
both SERDs in the E2 condition (Fig. 1d) and higher concentrations
of the two SERDs were needed to inhibit cell growth in the
presence of E2, as shown by the increasing half-maximal inhibitory
concentrations (IC50) of AZD9496 and fulvestrant in the presence
of escalating concentrations of E2 (Supplementary Table 1). These
in vitro results suggest that AZD9496 is comparable to fulvestrant
in endocrine-sensitive cells.

AZD9496 inhibits tumour growth and ER signalling in vivo in the
presence of E2 in the naive setting
We next tested the effects of AZD9496 on tumour growth and ER
levels and activity in vivo in the presence and absence of E2 using
the MCF7 xenografts. Mice bearing MCF7 xenograft tumours that
were developed in the presence of E2 were randomised to
continued E2 or switched to ED in the presence of vehicle,
fulvestrant, or AZD9496 (Fig. 2a). In the presence of E2, both SERDs
significantly inhibited tumour growth (p= 0.007 and 0.047 for
AZD9496 and fulvestrant, respectively). Depriving the tumours of
E2 was sufficient to significantly block tumour growth, and the
addition of fulvestrant or AZD9496 did not further enhance
tumour growth inhibition (p= 0.232 and 0.305, respectively)
(Fig. 2a). IHC staining showed limited changes in ER expression
when fulvestrant or AZD9496 were administrated in the presence
of E2 (Fig. 2b). In contrast, in the ED condition, ER expression was
significantly reduced by AZD9496 and fulvestrant (Fig. 2b). ED also
led to a substantial decrease in PR levels, and no agonistic activity
by AZD9496 or fulvestrant treatment was observed (Fig. 2c). Gene
expression profiling of 45 ER-regulated genes (Supplementary
Table 2) in E2-stimulated tumours showed that both AZD9496 and
fulvestrant significantly modulated the expression of 26 of the 45
genes tested (Fig. 2d); among these genes were AREG, PGR,
CXCL12, GREB1, MYC, LITAF, and BAMBI. Of note, the two SERDs also
relieved the E2 inhibitory effect on genes potentially involved in
mechanisms of resistance, such as ERBB213 and TFF324. Only a
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limited number of genes (7 genes) were differentially modulated
by AZD9496 compared to fulvestrant (Supplementary Fig. 1).
These in vivo results suggest that both SERDs similarly target E2-
mediated tumour growth and signalling.

AZD9496 inhibits ER-dependent growth of EDR and TamR cells
in vitro but is cross-resistant to fulvestrant
We next evaluated the ER dependence of MCF7 and T47D cells
and their endocrine-resistant derivatives including EDR (to mimic
aromatase inhibitor resistance), TamR, and FulR. MCF7 EDR and
TamR models retained ER expression; however, the classic ER
target genes, such as PR and BCL2, were downregulated in EDR
and lost in TamR compared to parental cells (Fig. 3a). In the T47D
models, the TamR cells displayed low levels of ER expression and
lacked PR and BCL2 expression. The T47D EDR and FulR cells lost
expression of ER and classic ER target proteins (Fig. 3a). Silencing
of ER expression with two different small interfering RNA (siRNAs)
targeting ER12 demonstrated a profound growth inhibition (≥60%)
in the MCF7 EDR and TamR models (Supplementary Fig. 2A-B),
whereas in the MCF7 FulR model and in the T47D-resistant models
in which ER expression was very low or undetectable, only
minimal (MCF7 FulR) or no (all T47D endocrine-resistant deriva-
tives) growth inhibition was observed upon targeting ER
(Supplementary Fig. 2C-F).
We then tested AZD9496 in comparison with ED, tamoxifen,

and fulvestrant in all the endocrine-resistant cell models. In the
MCF7 EDR model, AZD9496 and fulvestrant but not tamoxifen
markedly inhibited cell growth (Fig. 3b, and Supplementary
Fig. 3A). In the MCF7 TamR model, fulvestrant and AZD9496
inhibited cell growth and ER expression, albeit the inhibitory effect
of AZD9496 was less robust than that of fulvestrant (Fig. 3b and

Supplementary Fig. 3B). The MCF7 FulR (Fig. 3b) and T47D EDR
and FulR (Fig. 3c) derivatives displayed loss of ER and were
resistant to all endocrine treatments, including AZD9496 and
fulvestrant. The T47D TamR cells had low levels of ER. While
fulvestrant did not have an inhibitory effect on these cells,
AZD9496 modestly inhibited T47D TamR cell growth (Fig. 3c). In
this model, further reductions of the already low levels of ER
protein were seen with fulvestrant and AZD9496 (Supplementary
Fig. 3C). These in vitro data suggest that AZD9496 can overcome
endocrine resistance in models that remain ER dependent.

AZD9496 overcomes ER-dependent growth in in vivo models of
endocrine resistance
We next studied the dose-dependent effect of AZD9496 using
three doses (0.5, 5, and 50mg/kg) and a standard fulvestrant dose
(5 mg) in a transplantable MCF7 TamR in vivo developed model20.
Kaplan–Meier assessment showed that AZD9496 and fulvestrant
significantly delayed TamR tumour growth (Fig. 4a). Median time
to tumour progression was 10 days for tamoxifen, 13 days for
vehicle, 16.5 days for 0.5 mg/kg, 19 days for 5 mg/kg, and 22 days
for 50 mg/kg AZD9496, and 19 days for fulvestrant, with a p value
of ≤0.03 for all SERD treatments compared to tamoxifen. No
difference was observed in median time to tumour progression
between 5mg/kg and 50mg/kg AZD9496 (Fig. 4a). Fulvestrant
and AZD9496 significantly reduced ER levels as tested by
immunohistochemistry and western blot (Fig. 4b, c). The effect
of short- (Fig. 4b, 10 days) or long-term AZD9496 treatment
(Fig. 4c) on ER expression was dose dependent, suggesting an on-
target effect (Cuzick nonparametric test, p ≤ 0.0001). Expression
analysis of ER-modulated genes (Supplementary Table 2) in short-
term treatment-sensitive tumours showed that fulvestrant and
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AZD9496, at 5 and/or 50mg/kg, significantly modulated ER-
dependent gene expression in comparison to tamoxifen (Fig. 4d).
The overall pattern of gene expression was comparable between
the two SERDs, with only 5 genes significantly modulated by both
SERDs, one upregulated (KCNN4) and four downregulated (RET,
TFF1, TFF3, and PGR) (Supplementary Fig. 4). These studies indicate
that both SERDs alter gene expression of ER+ endocrine-resistant
tumours, mostly blocking classic ER-induced gene transcription.
Since different TamR transplantable xenograft lines display

different degrees of sensitivity to fulvestrant, we next conducted a
study with another MCF7 TamR model that is more sensitive to
fulvestrant and AZD9496. In this model, the median time to
tumour progression was 26 and 69 days for tamoxifen and vehicle,
respectively, 92 days for fulvestrant (p= 0.0021), and 75 days for
AZD9496 (p= 0.0119) (Supplementary Fig. 5).
We next evaluated the long-term effects of AZD9496 using an

in vivo developed MCF7 EDR transplantable model. Fulvestrant

and AZD9496 significantly inhibited the growth of these
xenografts. Tumour regression was observed in two fulvestrant-
treated mice. Only one fulvestrant-treated and two AZD9496-
treated tumours progressed during the 90-day treatment period
(Fig. 4e). Both SERDs reduced ER protein level as demonstrated by
quantification of IHC staining using H-score (Fig. 4f).
Overall, our studies suggest that the oral SERD AZD9496 is

comparable to fulvestrant in the endocrine-resistant setting in
inhibiting tumour growth, and in reducing ER levels and ER-
regulated transcription.

DISCUSSION
Fulvestrant is the only Food and Drug Administration (FDA)-
approved SERD. However, its low bioavailability and intramuscular
route of administration are clinical limitations, raising the need for
a novel oral SERD with a more favourable bioavailability profile.
Several oral SERDs are currently in the early phase of clinical
development. Unlike other oral SERDs, such as GDC-0810 (ARN-
810)25 and RAD190126, or mixed SERM/SERD Hybrid drugs27,
AZD9496 was developed from a direct ER binding screen to
identify new motifs with drug-like properties, which could
degrade ER. As such, AZD9496 has a structure very similar to that
of E2 when bound to ER7. Preclinical studies have shown the
activity of AZD9496 mainly in ER+ endocrine-sensitive cell lines
and a limited number of resistant models. Here, we expanded
upon previous studies and investigated the activity of AZD9496 in
comparison to fulvestrant in a number of ER+ endocrine-resistant
models including models of oestrogen deprivation resistance,
tamoxifen resistance, and fulvestrant resistance. In addition, in
endocrine-sensitive models we comprehensively compared the
activity of AZD9496 to oestrogen deprivation, tamoxifen, and
fulvestrant.
Here we show that the oral SERD AZD9496 displayed similar

efficacy to fulvestrant in inhibiting ER+ endocrine-sensitive breast
cancer cell growth, and that both SERDs were equivalent or
superior to tamoxifen and ED. Of note, in the short-term in vivo
study with MCF7 xenografts, in the presence of E2, both SERDs
significantly modulated ER-dependent gene expression, including
E2-induced and -repressed genes involved in cell growth and
potentially in escape pathways of endocrine resistance13,24.
In the endocrine-resistant models, our data show that both

SERDs inhibit cell growth only in models that have retained a
substantial level of dependency on ER, as shown by parallel
experiments using genomic ER degradation by siRNA. These
studies suggest that the inhibitory effect of the SERDs is ER-
mediated and not due to off-target effects. Moreover, using our
transplantable in vivo developed MCF7 EDR model, we showed
that both fulvestrant and AZD9496 reduced tumour growth and
ER protein level, with no significant difference between the two
SERDs. These results are in agreement with our in vitro data and a
previously reported in vivo study using an in vitro developed EDR
model8.
The transplantable MCF7 TamR lines have a degree of

heterogeneity in response to fulvestrant that can be attributed
to some drift in the tumourigenic population selected with each
transplantation, explaining the increased sensitivity to both SERDs
in our second experiment. Importantly, however, the effect of
AZD9496 on tumour growth was comparable to that of fulvestrant
in both experiments, showing for the first time that indeed the
oral SERD AZD9496 is as effective as fulvestrant in the TamR
setting in vivo. In order to better understand the pharmacology of
AZD9496 in the TamR model, a biomarker analysis after short-term
(10-day) treatment was conducted. The RNA profiling of 45 ER-
regulated genes (Supplementary Table 2) revealed that short-term
AZD9496 and fulvestrant treatments both effectively inhibited the
residual expression of classic E2-induced genes (such as PGR and
TFF1), further suggesting that both SERDs inhibited tumour
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growth, at least partly, by effective degradation and/or blockade
of ER transcriptional activity.
Although we detected a growth inhibitory effect in the TamR

models with AZD9496 and fulvestrant treatment, we did not
observe tumour regression after short- or long-term fulvestrant or
AZD9496 despite continued ER repression. These findings are
likely due to incomplete degradation of ER and/or the activation
of other pathways of resistance. This suggests that future studies
should include therapeutic strategies with combinations with
other targeted treatments. One possibility would be the combina-
tion of a CDK4/6 inhibitor and AZD9496. The PALOMA328 trial
showed that addition of the CDK4/6 inhibitor palbociclib to
fulvestrant resulted in doubling of the median progression-free
survival compared to fulvestrant alone, and led to the FDA
approval of palbociclib in combination with fulvestrant for ER+
metastatic breast cancer. In agreement with this notion, in a
recent preclinical model, AZD9496 has been shown to induce
tumour regression when combined with palbociclib or inhibitors
of the PI3K pathway8.
In this study we also investigated the activity of AZD9496 in

fulvestrant-resistant models. The fulvestrant-resistant models were
resistant to AZD9496, suggesting cross-resistance between
AZD9496 and fulvestrant. The cross-resistance we detected in
preclinical studies will need to be investigated in the clinical
setting, as the oral bioavailability of AZD9496 may provide activity
even in the setting of resistance to fulvestrant treatment. Similarly,
our in vivo studies show overall comparable activity between
AZD9496 and fulvestrant in both endocrine-sensitive and
-resistant models. However, the oral bioavailability of AZD9496
may result in improved clinical benefit. The ongoing pre-surgical
window-of-opportunity studies that will compare the pharmaco-
dynamic endpoints of AZD9496 versus fulvestrant will hopefully
shed light on this question (NCT03236974).
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