551 research outputs found

    Global DNA methylation and cognitive and behavioral outcomes at 4 years of age: A cross‐sectional study

    Get PDF
    Background Accumulating evidence suggests that breastfeeding exclusivity and duration are positively associated with child cognition. This study investigated whether DNA methylation, an epigenetic mechanism modified by nutrient intake, may contribute to the link between breastfeeding and child cognition. The aim was to quantify the relationship between global DNA methylation and cognition and behavior at 4 years of age. Methods Child behavior and cognition were measured at age 4 years using the Wechsler Preschool and Primary Scale of Intelligence, third version (WPPSI‐III), and Child Behavior Checklist (CBC). Global DNA methylation (%5‐methylcytosines (%5mC)) was measured in buccal cells at age 4 years, using an enzyme‐linked immunosorbent assay (ELISA) commercial kit. Linear regression models were used to quantify the statistical relationships. Results Data were collected from 73 children recruited from the Women and Their Children's Health (WATCH) study. No statistically significant associations were found between global DNA methylation levels and child cognition or behavior (p > .05), though the estimates of effect were consistently negative. Global DNA methylation levels in males were significantly higher than in females (median %5mC: 1.82 vs. 1.03, males and females, respectively, (p < .05)). Conclusion No association was found between global DNA methylation and child cognition and behavior; however given the small sample, this study should be pooled with other cohorts in future meta‐analyses

    Multi-objective optimisation for receiver operating characteristic analysis

    Get PDF
    Copyright © 2006 Springer-Verlag Berlin Heidelberg. The final publication is available at link.springer.comBook title: Multi-Objective Machine LearningSummary Receiver operating characteristic (ROC) analysis is now a standard tool for the comparison of binary classifiers and the selection operating parameters when the costs of misclassification are unknown. This chapter outlines the use of evolutionary multi-objective optimisation techniques for ROC analysis, in both its traditional binary classification setting, and in the novel multi-class ROC situation. Methods for comparing classifier performance in the multi-class case, based on an analogue of the Gini coefficient, are described, which leads to a natural method of selecting the classifier operating point. Illustrations are given concerning synthetic data and an application to Short Term Conflict Alert

    Long Term Transcriptional Reactivation of Epigenetically Silenced Genes in Colorectal Cancer Cells Requires DNA Hypomethylation and Histone Acetylation

    Get PDF
    Epigenetic regulation of genes involves the coordination of DNA methylation and histone modifications to maintain transcriptional status. These two features are frequently disrupted in malignancy such that critical genes succumb to inactivation. 5-aza-2′-deoxycytidine (5-aza-dC) is an agent which inhibits DNA methyltransferase, and holds great potential as a treatment for cancer, yet the extent of its effectiveness varies greatly between tumour types. Previous evidence suggests expression status after 5-aza-dC exposure cannot be explained by the DNA methylation status alone. Aim: We sought to identify chromatin changes involved with short and long term gene reactivation following 5-aza-dC exposure. Two colorectal cancer cell lines, HCT116 and SW480, were treated with 5-aza-dC and then grown in drug-free media to allow DNA re-methylation. DNA methylation and chromatin modifications were assessed with bisulfite sequencing and Chromatin Immuno-Precipitation analysis. Results: Increased H3 acetylation, H3K4 tri-methylation and loss of H3K27 tri-methylation were associated with reactivation. Hypermethylated genes that did not show increased acetylation were transiently expressed with 5-aza-dC treatment before reverting to an inactive state. Three reactivated genes, CDO1, HSPC105 and MAGEA3, were still expressed 10 days post 5-aza-dC treatment and displayed localised hypomethylation at the transcriptional start site, and also an increased enrichment of histone H3 acetylation. Conclusions: These observations suggest that hypomethylation alone is insufficient to reactivate silenced genes and that increased Histone H3 acetylation in unison with localised hypomethylation allows long term reversion of these epigenetically silenced genes. This study suggests that combined DNA methyltransferase and histone deacetylase inhibitors may aid long term reactivation of silenced genes

    Diffusion in low-dimensional lipid membranes

    Get PDF
    The diffusion behavior of biological components in cellular membranes is vital to the function of cells. By collapsing the complexity of planar 2D membranes down to one dimension, fundamental investigations of bimolecular behavior become possible in one dimension. Here we develop lipid nanolithography methods to produce membranes, under fluid, with widths as low as 6 nm but extending to microns in length. We find reduced lipid mobility, as the width is reduced below 50 nm, suggesting different lipid packing in the vicinity of boundaries. The insertion of a membrane protein, M2, into these systems, allowed characterization of protein diffusion using high-speed AFM to demonstrate the first membrane protein 1D random walk. These quasi-1D lipid bilayers are ideal for testing and understanding fundamental concepts about the roles of dimensionality and size on physical properties of membranes from energy transfer to lipid packing

    FimH Adhesin of Type 1 Fimbriae Is a Potent Inducer of Innate Antimicrobial Responses Which Requires TLR4 and Type 1 Interferon Signalling

    Get PDF
    Components of bacteria have been shown to induce innate antiviral immunity via Toll-like receptors (TLRs). We have recently shown that FimH, the adhesin portion of type 1 fimbria, can induce the innate immune system via TLR4. Here we report that FimH induces potent in vitro and in vivo innate antimicrobial responses. FimH induced an innate antiviral state in murine macrophage and primary MEFs which was correlated with IFN-β production. Moreover, FimH induced the innate antiviral responses in cells from wild type, but not from MyD88−/−, Trif−/−, IFN−α/βR−/− or IRF3−/− mice. Vaginal delivery of FimH, but not LPS, completely protected wild type, but not MyD88−/−, IFN-α/βR−/−, IRF3−/− or TLR4−/− mice from subsequent genital HSV-2 challenge. The FimH-induced innate antiviral immunity correlated with the production of IFN-β, but not IFN-α or IFN-γ. To examine whether FimH plays a role in innate immune induction in the context of a natural infection, the innate immune responses to wild type uropathogenic E. coli (UPEC) and a FimH null mutant were examined in the urinary tract of C57Bl/6 (B6) mice and TLR4-deficient mice. While UPEC expressing FimH induced a robust polymorphonuclear response in B6, but not TLR4−/− mice, mutant bacteria lacking FimH did not. In addition, the presence of TLR4 was essential for innate control of and protection against UPEC. Our results demonstrate that FimH is a potent inducer of innate antimicrobial responses and signals differently, from that of LPS, via TLR4 at mucosal surfaces. Our studies suggest that FimH can potentially be used as an innate microbicide against mucosal pathogens

    Micro-Raman study of crichtonite group minerals enclosed into mantle garnet

    Get PDF
    We report the first comprehensive micro-Raman study of crichtonite group minerals (CGM) as inclusions in pyropic garnet grains from peridotite and pyroxenite mantle xenoliths of the Yakutian kimberlites as well as in garnet xenocrysts from the Aldan shield lamprophyres (Russia). The CGM form (i) morphologically oriented needles, lamellae, and short prisms and (ii) optically unoriented subhedral to euhedral grains, either single or intergrown with other minerals. We considered common mantle-derived CGM species (like loveringite, lindsleyite, and their analogues), with Ca, Ba, or Sr dominating in the dodecahedral A site and Zr or Fe in the octahedral B site. The Raman bands at the region of 600–830 cm−1 are indicative of CGM and their crystal-chemical distinction, although the intensity and shape of the bands appear to be dependent on laser beam power and wavelength. The factor-group analysis based on the loveringite crystal structure showed the octahedral and tetrahedral cation groups with 18f and 6c Wyckoff positions, namely, dominantly TiO6 and to a lower extent CrO6, MgO4, and FeO4 groups, to be the major contributors to the Raman spectral features. The ionic groups with dodecahedral (M0) and octahedral (M1) coordination are inactive for Raman scattering while active in infrared absorption. A number of observed Raman modes in the CGM spectra are several times lower than that predicted by the factor group analysis. The noticed broadening of modes in the CGM Raman spectra may result from a combining of bands at the narrow frequency shift regions. Solid solution behavior, luminescence, and partial metamictization of the CGM may exert additional influence on the Raman band shape. The Raman spectral features showed CGM to be accurately identified and distinguished from other Ti-, Fe-, Cr-, and Zr-containing oxides (e.g., ilmenite or those of spinel and magnetoplumbite groups) occurring as accessory mantle minerals. © 2020 The Authors. Journal of Raman Spectroscopy published by John Wiley & Sons LtdRussian Science Foundation, RSF: 18‐77‐10062Council on grants of the President of the Russian FederationThis study was supported by the Russian Science Foundation (Grant 18‐77‐10062). The equipment of the Ural Center for Shared Use «Modern Nanotechnology», Ural Federal University, and the Analytical Center for Multi‐elemental and Isotope Research, IGM, was used. Sampling was supported by the Russian Federation state assignment project of IGM. We are grateful to Nikolai V. Sobolev for Samples O‐173, O‐39, and O‐264. Vladimir N. Korolyuk, Elena N. Nigmatulina (IGM), and Allan Patchen (UT) are highly appreciated for the help with EMP analyses. We express our sincere thanks to F. Nestola and an anonymous reviewer for their thorough reviews and helpful suggestions, and to C. Marshall for regardful editorial handling of the manuscript on every stage of its revision

    A mechanism for the inhibition of DNA-PK-mediated DNA sensing by a virus

    Get PDF
    The innate immune system is critical in the response to infection by pathogens and it is activated by pattern recognition receptors (PRRs) binding to pathogen associated molecular patterns (PAMPs). During viral infection, the direct recognition of the viral nucleic acids, such as the genomes of DNA viruses, is very important for activation of innate immunity. Recently, DNA-dependent protein kinase (DNA-PK), a heterotrimeric complex consisting of the Ku70/Ku80 heterodimer and the catalytic subunit DNA-PKcs was identified as a cytoplasmic PRR for DNA that is important for the innate immune response to intracellular DNA and DNA virus infection. Here we show that vaccinia virus (VACV) has evolved to inhibit this function of DNA-PK by expression of a highly conserved protein called C16, which was known to contribute to virulence but by an unknown mechanism. Data presented show that C16 binds directly to the Ku heterodimer and thereby inhibits the innate immune response to DNA in fibroblasts, characterised by the decreased production of cytokines and chemokines. Mechanistically, C16 acts by blocking DNA-PK binding to DNA, which correlates with reduced DNA-PK-dependent DNA sensing. The C-terminal region of C16 is sufficient for binding Ku and this activity is conserved in the variola virus (VARV) orthologue of C16. In contrast, deletion of 5 amino acids in this domain is enough to knockout this function from the attenuated vaccine strain modified vaccinia virus Ankara (MVA). In vivo a VACV mutant lacking C16 induced higher levels of cytokines and chemokines early after infection compared to control viruses, confirming the role of this virulence factor in attenuating the innate immune response. Overall this study describes the inhibition of DNA-PK-dependent DNA sensing by a poxvirus protein, adding to the evidence that DNA-PK is a critical component of innate immunity to DNA viruses
    corecore