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Summary. Receiver operating characteristic (ROC) analysis is now a standard tool
for the comparison of binary classifiers and the selection operating parameters when
the costs of misclassification are unknown.

This chapter outlines the use of evolutionary multi-objective optimisation tech-
niques for ROC analysis, in both its traditional binary classification setting, and in
the novel multi-class ROC situation.

Methods for comparing classifier performance in the multi-class case, based on
an analogue of the Gini coefficient, are described, which leads to a natural method of
selecting the classifier operating point. Illustrations are given concerning synthetic
data and an application to Short Term Conflict Alert.

1 Introduction

One of the fundamental problems of machine learning is deciding to which
class an unknown example belongs on the basis of a number of examples
whose correct class is known. Applications abound, for example: automatically
distinguishing harvested potatoes from clods of earth; detecting fraudulent
financial transactions; clinical screening; and deciding whether aircraft are
likely to pass dangerously close to each other. The cost of making the wrong
classification ranges from almost negligible or slightly embarrassing to – in the
case of safety critical systems – life threatening. False positives, for example
the incorrect identification of clods as potatoes, are inevitable in most practical
situations and attempting to limit their number leads to a reduction in the
number of true positives. Selecting a classifier and its operating parameters
to simultaneously maximise the true positive rate while minimising the false
positive rate is thus a multi-objective optimisation problem, which we address
in this chapter.

Given a classifier that yields estimates of the exemplar’s probability of be-
longing to each of the classes and when the relative costs of misclassification
are known, it is straightforward to determine the decision rule that minimises
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the average cost of misclassification. However, the true costs of misclassifica-
tion are frequently unknown and difficult to determine precisely (e.g. [4, 1]).
In such cases the practitioner must either guess the misclassification costs or
explore the trade-off in classification rates as the decision rule is varied.

Receiver operating characteristic (ROC) analysis provides a convenient
graphical display of the trade-off between true and false positive classification
rates. Since its introduction in the medical and signal processing literatures
[20, 39] ROC analysis has become a prominent method for selecting an op-
erating point. The recent work of Provost and Fawcett [32, 31] reintroduced
ROC analysis to the machine learning community; see [17, 21, 35] for a re-
cent snapshot of methodologies and applications. The fundamental trade-off
between true and false positive rates permits ROC analysis to be cast as
a multi-objective optimisation problem. In this chapter we review the foun-
dations of ROC analysis and the application of evolutionary algorithms to
finding classifiers with optimal ROC curves. The methodology is illustrated
on a synthetic problem and on a safety related system employed to raise a
warning if two aircraft are likely to become dangerously close. The evolution-
ary optimisation point of view allows a straightforward generalisation of the
two class classification methodology to multiple classes, which we describe in
section 5.

ROC analysis is frequently used for evaluating and comparing classifiers,
the area under the ROC curve (AUC) or, equivalently, the Gini coefficient.
Although the straightforward analogue of the AUC is unsuitable for more than
two classes, in section 6 we describe a straightforward generalisation of the
Gini coefficient which quantifies the superiority of a classifier’s performance
to random allocation and permits the comparison of classifiers on a particular
problem.

2 Risk and cost

In general a classifier seeks to allocate an exemplar or measurement x to one
of a number of classes, Ak. For the time being we permit the number of classes
Q to be greater than 2; we specialise to binary classification in section 3 and
return to multi-class ROC analysis in sections 5 and 6.

Allocation of x to the incorrect class, say Aj , usually incurs some, often
unknown, cost denoted by λkj . We count the cost of a correct classification as
zero: λkk = 0, but see Elkan [9] for a treatment of the general case. Denoting
the probability under some decision rule or classifier of assigning an exemplar
to Aj when its true class is in fact Ak as p(Aj | Ak) the overall risk or expected
cost is

R =
∑

j,k

λkjp(Aj | Ak)πk (1)
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where πk is the prior probability of Ak. The performance of some particular
classifier may be conveniently be summarised by a confusion matrix or contin-
gency table, Ĉ, which summarises the results of classifying a set of examples.
Each entry Ĉkj of the confusion matrix gives the number of examples, whose
true class was Ak, that were actually assigned to Aj . Normalising the confu-
sion matrix so that each row sums to unity gives the confusion rate matrix,
which we denote by C, whose entries are estimates of the misclassification
probabilities: p(Aj | Ak) ≈ Ckj . Thus the expected risk is estimated as

R =
∑

j,k

λkjCkjπk. (2)

The expected risk can be written in terms of the posterior probabilities of
classification to each class. The conditional risk or average cost of assigning x

to Aj is

R(Aj |x) =
∑

k

λkjp(Ak |x) (3)

where p(Ak |x) is the posterior probability that x belongs to Ak. If α(xn) is
a decision rule or classifier that assigns x to one of the classes Ak, then the
expected overall risk is

R =

∫

R(α(x) |x)p(x) dx. (4)

The expected risk is then minimised, being equal to the Bayes risk, when x is
assigned to the class with the minimum conditional risk (e.g., [8]). Choosing
‘zero-one costs’, λjk = 1 − δjk, means that all misclassifications are equally
costly and the conditional risk is equal to the class posterior probability. The
optimum assignment is therefore to the class with the greatest posterior prob-
ability, which minimises the overall error rate.

When the costs of misclassification are known it is therefore straightfor-
ward make assignments to achieve the Bayes risk (provided, of course, that the
classifier yields accurate assessments of the posterior probabilities p(Ak |x)).
However, costs are frequently unknown and difficult to estimate, particularly
when there are many classes; in this case it is useful to be able to compare
the classification rates as the costs vary.

3 Binary ROC analysis

For binary classification, in which x is assigned either to A1 or A2, the con-
ditional risk may be simply rewritten in terms of the posterior probability
of assigning to A1, resulting in the rule: assign x to A1 if p(A1 |x) > t =
λ12/(λ12 + λ22). This decision rule reveals that there is, in fact, only one
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Fig. 1. ROC curves of maximum likelihood MLP (dashed-dotted line) and logistic
regression (dashed line) classifiers. Curves traced out by varying costs. The ROC
corresponding to random allocation is shown as the diagonal line.

degree of freedom in the binary cost matrix and, as might be expected, the
entire range of classification rates for each class is swept out as the classifica-
tion threshold t varies from 0 to 1. It is this variation of rates that the ROC
curve exposes for binary classifiers. ROC analysis focuses on the classification
of one particular class, say A1,1 and plots the true positive classification rate
for A1 versus the false positive rate as the threshold t or, equivalently, the
ratio of misclassification costs is varied.

As an illustrative example we consider a two-class, two-feature synthetic
data set based on a Gaussian mixture model data set introduced by Ripley
[33]. Weights for the five components were (0.16, 0.17, 0.17, 0.25, 0.25): the first
3 components, with component means at (1, 1)T , (−0.7, 0.3)T and (0.3, 0.3)T ,
generate A1; while the remaining 2 components, with means at (−0.3, 0.7)T

and (0.4, 0.7)T , generate A2. The covariances of all components are isotropic:
Σj = 0.03I. In the work described here 250 observations were used for train-
ing.

Figure 1 shows the ROC curve for a multi-layer perceptron (MLP) with 5
units in a single hidden layer, trained by minimising the cross entropy using
quasi-Newton minimisation, which is tantamount to finding the maximum
likelihood model, see for example, [3]. As illustrated by the figure, a range of
true and false positive classification rates is available as the decision threshold
t is varied. The figure also shows the ROC curve for a logistic regressor [e.g. 3],

1 Note that all the information about the other class is easily recovered.
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Fig. 2. Data points for an augmented version of Ripley’s synthetic data and decision
boundaries of maximum likelihood classifiers at different false positive rates for the
‘circles’ class found by varying the decision threshold t. First row: MLPs, Second row:

Logistic regression classifiers. First column: FPR = 0.04, Second column: FPR =
0.072, Third column: FPR = 0.144.

whose ROC curve is clearly inferior to the MLP’s because every point on the
logistic regressor’s curve is dominated by (at least) one point on the MLP’s
curve. This may be expected as the logistic regressor’s decision boundaries
are constrained to be hyper-planes (straight lines in this 2D situation) and it
therefore has much less flexibility than the MLP.

Figure 2 shows the decision regions for the MLP and logistic regressor
when the false positive rate for the ‘circles’ class is 0.040, 0.072 and 0.144. As
the figure shows the decision boundaries for the logistic regressor at different
thresholds are parallel to each other because contours of posterior probability
p(Ak |x) are parallel straight lines, and there is little variation in the location
of the decision boundary as the false positive rate varies from 0.04 to 0.144.
By contrast, the MLP decision boundaries are curved, better fitting the data,
and the decision boundaries for different thresholds are not parallel because
contours of posterior probability are not parallel. Nonetheless both sets of
decision boundaries show the same general trend: a higher true positive rate
is achieved by moving the decision boundary so as to encompass more A1

(circles) observations, which means that more A2 observations are erroneously
assigned as A1 resulting in an increased false positive rate.

The diagonal of the ROC plot (Figure 1) shows the performance of the
classifier that allocates examples to A1 with constant probability, without
regard for the features x. If a classifier performs worse than random for some
thresholds, such as the logistic regressor for FPR ! 0.63, then performance
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equivalent to reflecting the ROC curve in the diagonal is obtained merely by
swapping the class labels.

Portions of the logistic regressor ROC curve are markedly concave, and
Scott et al. [34] and Provost and Fawcett [31, 32] have shown that classifiers
with operating characteristics on the convex hull of the ROC curve can be
constructed by stochastically combining classifiers on the ROC curve itself.

3.1 Pareto optimality

So far we have considered ROC curves for a single classifier as the decision
threshold t is varied. It is useful, however, to consider the classifiers that are
obtained by varying, not only the decision threshold, but the classifier param-
eters, such as the weights in a neural network or the thresholds in a decision
tree. In general we denote these classifier parameters by w. This leads nat-
urally to a multi-objective optimisation problem which may be solved using
current evolutionary methods. In order to permit straightforward generali-
sation to problems with more than two classes, rather than attempting to
maximise the true positive rate and minimise the false positive rate, we con-
sider the equivalent problem of minimising the false positive rates for both
classes, which in terms of the confusion rate matrix are C12 and C21. We
therefore seek solutions to the multi-objective minimisation problem:

minimise Cjk(w, λ) for all j #= k. (5)

Here we have made explicit the dependence of the false positive rates on both
the parameters w and the misclassification costs λ. For notational convenience
and because they will be treated as a single entity, we write the costs and
classifier parameters as a single vector of generalised parameters, θ = {λ,w};
to distinguish θ from the classifier parameters w we use the optimisation
terminology decision vector to refer to θ.

If all the misclassification rates for one classifier with decision vector θ are
no worse than the classification rates for another classifier φ and at least one
rate is better, then the classifier and costs determined by θ is said to strictly
dominate that with decision vector φ. Thus θ strictly dominates φ (denoted
θ ≺ φ) iff:

Cjk(θ) ≤ Cjk(φ) ∀j, k and
Cjk(θ) < Cjk(φ) for some j, k.

(6)

Less stringently, θ weakly dominates φ (denoted θ ' φ) iff:

Cjk(θ) ≤ Cjk(φ) ∀j, k. (7)

A set E of decision vectors is said to be a non-dominated set if no member of
the set is dominated by any other member:

θ #≺ φ ∀θ, φ ∈ E. (8)
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A solution to the minimisation problem (5) is thus Pareto optimal if it is not
dominated by any other feasible solution, and the non-dominated set of all
Pareto optimal solutions is known as the Pareto front. The Pareto optimal
ROC curve may be thought of as the non-dominated set formed from the
union of the ROC curves for each fixed parameter set w; however, multi-
objective evolutionary techniques permit more efficient location of the Pareto
front when the classifier has many parameters.

Recent years have seen the development of a number of evolutionary tech-
niques based on dominance measures for locating the Pareto front; see [5, 6]
and [36] for recent reviews. Kupinski and Anastasio [26] and Anastasio et al.
[2] introduced the use of multi-objective evolutionary algorithms (MOEAs)
to optimise ROC curves for binary problems, illustrating the method on a
synthetic data set and for medical imaging problems; and we have used a sim-
ilar methodology for locating optimal ROC curves for safety-related systems
[13, 11]. In the following section we describe a straightforward evolutionary
algorithm for locating the Pareto front for binary and multi-class problems.
We illustrate the method on a synthetic problem for two different classifiers
in Section 4.1.

4 Evolving classifiers

The algorithm we describe is based on a simple analogue of mutation-based
evolution (such as [15, 13, 23, 24, 28, 27]), but any recent elitist MOEA could
equally well be used [5, 6, 7, 18, 36, 38].

The algorithm, an evolution strategy (ES), maintains a set or archive E of
decision vectors, whose members are mutually non-dominating, which forms
the current approximation to the Pareto front and is a source of elite solu-
tions for evolution. As the computation progresses members of E are selected,
copied and their decision vectors perturbed, and the objectives corresponding
to the perturbed decision vector evaluated; if the perturbed solution is not
dominated by any element of E, it is inserted into E and any members of E
which are dominated by the new entrant are removed. Therefore the archive
can only move towards the Pareto front: it is in essence a greedy search where
the archive E is the current point of the search and perturbations to E that
are not dominated by the current E are always accepted.

Algorithm 1 describes the procedure in more detail. The archive E is
initialised by evaluating the misclassification rates for a number (here 100) of
randomly chosen parameter values and costs, and discarding those which are
dominated by another element of the initial set. Then at each generation a
single element, θ is selected from E (line 3 of Algorithm 1); selection may be
uniformly random, but partitioned quasi-random selection (PQRS) [15] was
used here to promote exploration of the front. PQRS prevents clustering of
solutions in a particular region of the front biasing the search because they
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Algorithm 1 Multi-objective evolution scheme for ROC surfaces.

1: E := initialise()
2: for t := 1 : T Loop for T generations

3: {w, λ} = θ := select(E) PQRS

4: w′ := perturb(w) Perturb parameters

5: for i := 1 : L Loop over weight samples

6: λ′ := sample() Sample costs

7: C := classify(w′, λ′) Evaluate classification rates

8: θ′ := {w′, λ′}
9: if θ′ !" φ ∀φ ∈ E

10: E := {φ ∈ E |φ ⊀ θ′} Remove dominated elements

11: E := E ∪ θ′ Insert θ′

12: end

13: end

14: end

are selected more frequently, thus increasing the efficiency and range of the
search.

The selected parent decision vector is copied, after which the costs λ and
classifier parameters w are treated separately. The parameters w of the clas-
sifier are perturbed or, in the nomenclature of evolutionary algorithms, mu-
tated, to form a child, w′ (line 4). Here we seek to encourage wide exploration
of parameter space by additively perturbing each of the parameters with a
random number δ drawn from a heavy tailed distribution (such as the Lapla-
cian density, p(δ) ∝ e−|δ|). The Laplacian distribution has tails that decay
relatively slowly, thus ensuring that there is a high probability of exploring
regions distant from the current solutions, facilitating escape from local min-
ima [37].

With a proposed parameter set w′ on hand the procedure then investigates
the misclassification rates as the costs are varied with fixed parameters. In or-
der to do this we generate L sample costs λ′ and evaluate the misclassification
rates for each of them. Since the misclassification costs are non-negative and
sum to unity, a straightforward way of producing samples is to make draws
from a Dirichlet distribution:

p(λ) = Dir(λ |α1, . . . , αD) (9)

=
Γ (
∑D

i=1 αi)
∏D

i=1 Γ (αi)

(

1 −
D−1
∑

i=1

λi

)αD−1 D−1
∏

i=1

λαi−1
i (10)

where the index i labels the D ≡ Q(Q − 1) off-diagonal entries in the cost
matrix. Samples from a Dirichlet density lie on the simplex

∑

kj λkj = 1. The
αjk ≥ 0 determine the density of the samples; since we have no preference for
particular costs here, we set all the αkj = 1 so that the simplex (that is, cost
space) is sampled uniformly with respect to Lebesgue measure.
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Fig. 3. ROC curves of maximum likelihood MLP (dashed-dotted line) and logis-
tic regression (dashed line) classifiers, along with the optimised ROC curves for
each classifier type. The ROC corresponding to random allocation is shown as the
diagonal line.

The misclassification rates for each cost sample λ′ and classifier param-
eters w are used to make class assignments for each example in the given
dataset (line 7). Usually this step consists of merely modifying the posterior
probabilities p(Ak |x) to find the assignment with the minimum expected cost
and is therefore computationally inexpensive as the probabilities need only be
computed once for each w′. The misclassification rates Ckj(θ

′) (j #= k) com-
prise the objective values for the decision vector θ′ = {w′, λ} and decision
vectors that are not dominated by any member of the archive E are inserted
into E (line 11) and any decision vectors in E that are dominated by the new
entrant are removed (line 10). Since artificially limiting the archive size may
inhibit convergence, the archive is permitted to grow without limit. Although
managing the number of solutions in the archive has not proved a compu-
tational bottleneck, data structures to efficiently maintain and query large
archives may be used for very large archives [15, 22].

A (µ + λ) evolution strategy (ES) is defined as one in which µ decision
vectors are selected as parents at each generation and perturbed to generate
λ offspring.2 The set of offspring and parents are then truncated or replicated
to provide the µ parents for the following generation. Although Algorithm
1 is based on a (1 + 1)-ES, it is interesting to note that each parent θ is
perturbed to yield L offspring, all of whom have the classifier parameters w′ in

2 We adhere to the optimisation terminology for (µ + λ)-ES, although there is a
potential for confusion with the costs λkj .
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Fig. 4. Decision boundaries of optimised classifiers at different false positive
rates. First row: MLPs, Second row: Logistic regression classifiers. First column:

FPR=0.04, Second column: FPR=0.072, Third column: FPR=0.144.

common. With linear costs, evaluation of the objectives for many λ′ samples
is inexpensive. Nonlinear costs could be incorporated in a straightforward
manner, although it would necessitate complete reclassification for each λ′

sample and it would therefore be more efficient to resample w with each λ′.
Although we have assumed complete ignorance as to the misclassification

costs, some imprecise information may often be available; for example the
approximate bounds on the ratios of the λjk may be known. In this case the
evolutionary algorithm is easily focused on the relevant region by setting the
Dirichlet parameters αjk appearing in (9) to be in the ratio of the expected
costs, with their magnitudes setting the variance in the cost ratios.

4.1 Illustration

Figure 3 shows the optimised ROC curve for a MLP with 5 hidden units
and the optimised ROC curve for the logistic regressor, along with the origi-
nal ROC curve of the single maximum likelihood MLP and logistic regressor
classifiers from Figure 1. We emphasise that the optimised ROC curves are
generally comprised of operating points for several parameter values. The
ROC curve of the optimised logistic regressor is again clearly inferior to the
MLP’s optimised ROC – however, the optimised ROCs are clearly superior
to the ROC curves for the single maximum likelihood classifier of each family.
A user is thus able to select an operating point and corresponding classifier
parameters from the optimised ROC curves.

Figure 4 shows the decision regions for the optimised MLPs and logistic
regressors when the false positive rate C12 is 0.040, 0.072 and 0.144. As each
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point on the ROC curve may be derived from a different model parameterisa-
tion as well as corresponding to different cost matrices, the decision boundaries
for the logistic regressor at different thresholds are no longer parallel to each
other. The MLP decision contours also show a greater difference than those
from Figure 2 – again demonstrating the extra flexibility available through
parameter variation. Both sets of decision boundaries again show the same
general trend moving along the ROC curve from left to right, with a higher
true positive rate for A1 being achieved by moving the decision boundary so
as to encompass more A1 observations and sacrificing the correct classification
of A2 points.

4.2 Short Term Conflict Alert

As an illustration of the utility of multi-objective ROC analysis we describe
its application to the optimisation of a Short Term Conflict Alert (STCA) sys-
tem. This system, covering UK airspace, is responsible for providing advisory
alerts to air traffic controllers if two aircraft are likely to become dangerously
close. Ground-based radar is used to monitor the positions and heights of
aircraft in the airspace. Having filtered out pairs of aircraft that are simply
too far apart to be in any danger of collision in the next few minutes, the
system makes predictions using three modules – the linear predictive filter,
the current proximity filter and the manoeuvre hazard filter – whose results
are combined into a final prediction. The three modules each have a number
of parameters which may have different values when aircraft are in different
airspace categories (for example, en route or stacked) so that w the vector
describing the adjustable parameters has over 1500 entries.

Skilled staff of the National Air Traffic Services (NATS, the principal civil
air traffic control authority for the UK) manually adjust or tune these param-
eters in order to reduce the number of false positive alerts while maintaining
the true positive alerts. This tuning is performed manually on the basis of a
database comprised of 170 000 aircraft pairs, containing historical and recent
encounters. However, the receiver operating characteristics of the STCA sys-
tem have been unknown, hampering the choice of the optimal operating point
and parameters.

Figure 5 shows the Pareto optimal ROC front located after T = 6000
iterations of an MOEA which was permitted to adjust the 900 or so parameters
that are routinely adjusted by NATS staff. The true and false positive rates
corresponding to the manually tuned parameters w# are also marked as a
cross. As the figure shows, the optimisation has located an ROC curve, several
points of which dominate the manually tuned operating point. Although the
ROC curve allows the choice of operating points that are a little better than
the manually tuned operating point, we view as more important, however, the
production of the ROC curve itself, because it reveals the true positive versus
false positive rate trade-off, permitting a principled choice of the operating
point to be made. In fact the current operating point w# is close to the corner
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Fig. 5. Dots show estimates of the Pareto optimal ROC curve for STCA obtained
after 6000 evaluations of a multi-objective optimiser. The cross indicates the man-
ually tuned operating point w!.

of the Pareto optimal curve. Choosing an operating point to the left of the
corner would result in a rapidly diminishing true positive rate for little gain
in the false positive rate; whereas operating points to the right of the corner
provide small increases in the true positive rate at the expense of relatively
large increases in the false positive rate.

Full details of the methods used and the results may be found in [13, 11],
in which it is shown that the optimisation of the ROC curve can be carried
out simultaneously with the optimisation of other objectives, for example the
warning time of a possible conflict given to air traffic controllers.

5 Multi-class ROC analysis

ROC analysis for binary classification focuses on the true and false positive
rates for a particular class, although the true and false positive rates for
the other class are easily derived from these. However, when discriminating
between Q > 2 classes, focussing on a single class is likely to be misleading.
We consider instead the rates at which each class is misclassified into each
of the other classes. With Q classes this leads us to consider D ≡ Q(Q − 1)
misclassification rates Ckj for all j #= k. That is, we consider the off-diagonal
elements of the confusion matrix. The true positive rates, corresponding to the
diagonal elements of C, are easily determined from the off-diagonal elements
since each columns sums to unity. The two objective minimisation problem
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for binary classification naturally generalises in the multi-class case to a D-
dimensional multi-objective minimisation of the off-diagonal elements of the
confusion rate matrix (5).

As in the binary classification case, the absolute magnitude of the misclas-
sification costs is not important and we assume that they are normalised so
that they sum to one:

∑

j #=k λkj = 1. There are, therefore, D−1 = Q(Q−1)−1
degrees of freedom in the cost matrix, so that the Pareto front in general has
dimension D − 1 and may be thought of as a hyper-surface dividing the D-
dimensional objective space of misclassification rates.

The minimisation problem (5) and Algorithm 1 were defined in such a
way that they can be directly applied to the optimisation of ROC surfaces for
multi-class problems, as we now illustrate.

5.1 Illustration

The synthetic data used above is simply extended to Q = 3 classes by aug-
menting it with an additional Gaussian centre, so that each of the three classes
is defined by a mixture of two Gaussian densities, all with isotropic covariances
Σj = 0.3I. All the centres are equally weighted and if µji for i = 1, 2 denotes
the means of the two Gaussian components generating samples for class j,
the centres are: µ11 = (0.7, 0.3)T , µ12 = (0.3, 0.3)T , µ21 = (−0.7, 0.7)T ,
µ22 = (0.4, 0.7)T , µ31 = (1.0, 1.0)T , µ32 = (0.0, 1.0)T .

We again use the MOEA to discover the Pareto optimal ROC surface
for an MLP with five hidden units and softmax output units classifying 300
examples of the synthetic data. The MOEA was run for T = 10000 evalu-
ations of the classifier, resulting in an estimated Pareto front or ROC sur-
face comprising approximately 4800 mutually non-dominating parameter and
cost combinations. The archive was initialised by training a single MLP using
quasi-Newton optimisation of the data likelihood [e.g. 3] which finds a point on
or near the Pareto front corresponding to equal misclassification costs; subse-
quent iterations of the evolutionary algorithm are therefore largely concerned
with exploring the Pareto front rather than locating it.

Decision regions corresponding to various places on the Pareto optimal
ROC surface are shown in the top row of Figure 6. The left panel shows
regions that yield the smallest total misclassification error. This point has
very similar decision regions to the Bayes optimal decision regions for equal
costs (equal cost decision boundaries are shown as solid lines) as may be
expected since the overlap between classes is approximately comparable and
there are equal numbers in each class. Note that although no explicit measures
were taken to prevent over-fitting, the decision boundaries are smooth and do
not show signs of over-fitting.

By contrast with decision regions that are optimal for roughly equal costs,
the middle and right panels show decision regions for imbalanced costs. The
middle panel shows decision regions corresponding to minimising C21 and C23:
this, of course, can be achieved by setting λ21 and λ23 to be large, so that
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Fig. 6. Decision regions for various MLP top row and multinomial logistic bottom

row classifiers on the multi-class ROC surface. Grey scale background shows the class
to which a point would be assigned. Solid lines show the ideal equal-cost decision
boundary. Symbols show actual training data. Left column: Parameters correspond-
ing to minimum total misclassification error on the training data. Middle column:

Decision regions corresponding to the minimum C21 and C23 and conditioned on
this, minimum C31 and C13. Right column: Decision regions corresponding to min-
imising C12 and C32.

every A2 example (triangles) is correctly classified, no matter what the cost.
For these data there are many parameterisations correctly classifying every
A2 in the training data and we display the decision regions that also minimise
C31 and C13. For these data, it is possible to make C31 = C13 = 0 because
A1 and A3 are adjacent only along a boundary distant from A2 points; such
complete minimisation will not be generally possible. Of course, the penalty
to be paid for minimising the A2 rates together with C31 and C13 is that C32

and C12 are large.
The top-right panel of Figure 6 shows the reverse situation: here the costs

for misclassifying either A1 or A3 as C2 are high. With these data, although
not in general, it is possible to reduce C12 and C32 to zero, as shown by the
decision regions which ensure that A2 examples (triangles) are only classified
correctly when it does not result in incorrect assignment of the other two
classes to A2. In this case the greatest misclassification rate is C23 (triangles
as crosses).

The bottom row of Figure 6 shows decision boundaries for a multinomial
logistic regressor [e.g. 3] corresponding to the same points on the Pareto opti-
mal ROC surface as shown in the top row for the MLP. (The MOEA was run
for 5000 generations resulting in an estimated Pareto front of approximately
9000 non-dominating cost and parameter combinations, although very similar
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results are obtained after 2000 generations.) The logistic regressor is less flex-
ible than an MLP, having only (d+1)Q parameters, where d is the dimension
of the input space. On this 2-dimensional, 3-class data it therefore has only 9
adjustable parameters (compared with the 33 for the MLP), and the decision
boundaries are therefore less convoluted and less well fit to the data than
those for the MLP. The same trends are evident although the classification
rates are lower.

The decision regions illustrated in the middle and right columns of Figure
6 may thought of as lying on the periphery of the Pareto surface because they
correspond to one or more objectives being exactly minimised. These points
are the analogues of the extreme ends of the usual two-class ROC curve where
the true and false positive rates for both classes are extremised. The curvature
of the ROC curve in these regions is usually small, signifying that large changes
in the costs yield large changes in either the true or false positive rate, but
only small changes in the other. We observe a similar behaviour here: quite
large changes in the λkj in these regions yield quite small changes in the all the
misclassification rates except the one which has been extremised suggesting
that the curvature of the Pareto surface is low in these areas.

As we described for the STCA example, a common use of the two-class
ROC curve is to locate a ‘knee’, a point of high curvature. The parameters at
the knee are chosen as the operational parameters because the knee signifies
the transition from rapid variation of true positive rate to rapid variation of
false positive rate. A disadvantage of the multi-class ROC front is that its high
dimension makes visualisation difficult, even for Q = 3 where the Pareto front
is embedded in 6-dimensional space. Visualisation of these high-dimensional
fronts is an area of active research; see [14] for an overview. Although, direct
visualisation of the front and therefore the curvature is difficult an alternative
strategy is to calculate the curvature of the manifold defined by the Pareto
front and use that for selecting operating points. To date endeavours in this
direction have yielded only crude approximations to the curvature even for
Q = 3 class problems and we do not present them here. However, an alterna-
tive method of selecting a classifier in binary problems is to choose the one
most distant from the diagonal of the ROC plot, and this idea can be naturally
extended to the multi-class ROC surface, as we discuss in section 6.

As noted above, direct visualisation of the multi-class ROC surface is
difficult because it is embedded in at least a 6-dimensional space. One
possibility, which is explored in more depth in [10, 14], is to project the
Pareto front into two or three dimensions using a data-determined nonlin-
ear mapping such as Neuroscale [29] or the Self Organising Map [25] (see
http://www.dcs.ex.ac.uk/~reverson/research/mcroc for examples). An
alternative which we briefly discuss here is to project the Pareto front into
false positive space. We denote by Fk the false positive rate for class k, without
regard to which class the misclassification is made; thus:
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tive rates for each class and different grey scales represent the class into which the
greatest number of misclassifications are made. (Points better than random shown.)

Fk(w, λ) =
∑

j #=k

Ckj k = 1, . . . , Q (11)

where we emphasise the dependence of the false positive rates on the param-
eterisation and costs. Each point on the Pareto front is then plotted at the
coordinates given by its Q false positive rates. This visualisation clearly loses
information on how a point is misclassified, but colour or grey scale can be
utilised to indicate the class that is most misclassified. Figure 7 shows the es-
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timated Pareto front for the logistic classifier visualised in this manner.3 Note
that, along with all other projection methods, the projection into the lower
dimensional false positive space does not preserve the mutual non-dominance
between points on the front, which appears as a thickened cloud in three di-
mensions. Nonetheless this sort of visualisation can be useful for navigating
the Pareto front.

6 Comparing classifiers: the Gini coefficient

In two class problems the area under the ROC curve (AUC) is often used
to compare classifiers. As clearly explained by Hand and Till [19], the AUC
measures a classifier’s ability to separate two classes over the range of possi-
ble costs and thus be estimated using the Mann-Wilcoxon-Whitney test [19].
Unfortunately no such test is presently available for the multi-class case. The
Gini coefficient is linearly related to the AUC, being twice the area between
the ROC curve and the diagonal of the ROC plot. In this section we show
how a natural generalisation of the Gini coefficient can be used to compare
classifiers. We also draw attention to Ferri et al. [12] who give another view
of the volume under multi-class ROC surfaces.

By analogy with the AUC, we might use the volume of the Q(Q − 1)-
dimensional hypercube that is dominated by elements of the ROC surface for
classifier A as a measure of A’s performance. In binary and multi-class prob-
lems alike its maximum value is 1 when A classifies perfectly. If the classifier
allocates to classes at random, without regard to the features x, then the
ROC surface is the simplex in Q(Q − 1)-dimensional space with vertices at
distance Q−1 along each coordinate vector. The volume of the unit hypercube
dominated by this simplex is [10]:

1

[Q(Q − 1)]!

[

(Q − 1)Q(Q−1) − Q(Q − 1)(Q − 2)Q(Q−1)
]

. (12)

When Q = 2 this volume (area) is just 1/2, corresponding to the area under
the diagonal in a conventional ROC plot.4 However, when Q > 2 the volume
not dominated by the random allocation simplex is very small; even when
Q = 3, the volume not dominated is ≈ 0.0806. Since almost all of the unit
hypercube is dominated by the random allocation simplex, we disregard this
volume and instead define G(A) to be the analogue of the Gini coefficient
in two dimensions, namely the proportion of the volume of the Q(Q − 1)-
dimensional unit hypercube that is dominated by elements of the ROC surface,

3 The Q Fk themselves may be directly minimised, but the information on how
misclassifications are made is irrecoverably lost; see also Mossman [30] who equiv-
alently maximises the true positive rates.

4 Although binary ROC plots are usually made in terms of true positive rates versus
false positive rates for one class, the false positive rate for the other class is just
1 minus the true positive rate for the other class.
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Fig. 8. Illustration of the G and δ measures for Q = 2. The shaded area corre-
sponds to 1

2
G(A), horizontal hatching indicates δ(A,B) and vertical hatching indi-

cates δ(B, A).

but is not dominated by the random allocation simplex. This is illustrated
by the shaded area in Figure 8 for the Q = 2 case. In binary classification
problems this corresponds to twice the area between the ROC curve and
the diagonal. In multi-class problems G(A) quantifies how much better than
random allocation is A. It can be simply estimated by Monte Carlo sampling
of the region in the unit hypercube not dominated by the random allocation
simplex.

If every point on the optimal ROC surface for classifier A is dominated by
a point on the ROC surface for classifier B, then classifier B is clearly superior
to classifier A. In general, however, neither ROC surface will completely dom-
inate the other: regions of A’s surface RA will be dominated elements of RB

and vice versa; this corresponds to ROC curves that cross in binary problems.
Let P denote the truncated pyramidal volume in the unit hypercube that is
not dominated by the random allocation simplex. (In Figure 8 P is the area
bounded by the origin and the points (0, 1) and (1, 0), but when Q ≥ 3 note
that the random allocation simplex intersects the coordinate axes at (Q − 1)
and P is that part of the region between the simplex and the origin that
also lies within the unit hypercube.) Then, to quantify the classifiers’ relative
performance we define δ(A, B) to be the volume of P that is dominated by el-
ements of RA and not by elements of RB (marked in Figure 8 with horizontal
lines). Note that δ(A, B) is not a metric, because although it is non-negative,
it is not symmetric. Also if RA and RB are subsets of the same non-dominated
set W (i.e., RA ⊆ W and RB ⊆ W ) then δ(A, B) and δ(B, A) may have a
range of values depending on their precise composition [16]. Situations like
this are rare in practice, however, and measures like δ have proved useful for
comparing Pareto fronts.
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Table 1. Generalised Gini coefficients and exclusively dominated volume compar-
isons of the logistic regression (LR) and MLP classifiers.

Q G(LR) G(MLP) δ(LR, MLP) δ(MLP, LR)

2
Train 0.584 0.962 0.000 0.379
Test 0.519 0.858 0.010 0.349

3
Train 0.847 0.965 0.000 0.118
Test 0.714 0.725 0.078 0.089

Table 1 shows the generalised Gini coefficient and δ measures for the multi-
nomial logistic regressor and MLP classifiers applied to the synthetic data in
both the 2 and 3 class cases. The Gini coefficients indicate that both classifiers
are better than random allocation and that a substantially greater volume of
P is dominated by the MLP than by the logistic regressor. The δ measures
show that, using the training data, the logistic regressor does not dominate
any regions that are not dominated by the MLP, although on the test set
of 1000 examples the measures indicate that the logistic regressor dominates
parts of the misclassification space not dominated by the MLP.

Figure 9 shows histograms of the distances from the random allocation
simplex of points on the estimated Pareto fronts for the logistic regressor
and MLP for the Q = 3 synthetic data. Negative distances correspond to
classifiers in P , that is, closer to the origin than the random allocation simplex,
while positive distances correspond to classifiers that, while non-dominated, lie
beyond the random allocation simplex. These are classifiers for which a one or
more misclassification rates has been allowed to become very poor in order to
minimise others. As the histogram, shows the majority of classifiers are wholly
better than random for both the MLP and the logistic regressor. However, the
positive distances for the logistic regressor indicate that its relative inflexibility
means that low misclassification rates for one class can only be achieved by
sacrificing performance on others.

The distance from the random allocation simplex provides a method of se-
lecting a single classifier from the Pareto front in the absence of other criteria
on which to base the choice. Provided that the classifier lies within the unit
hypercube, this criterion is equivalent to choosing the classifier which dom-
inates the largest proportion of the region P . Figure 10 shows the decision
regions for the logistic regressor and MLP corresponding to the most distant
classifiers from which it can be seen that, in this case, the decision regions for
these classifiers are quite close to the ideal equal-cost decision regions.

7 Conclusion

In this chapter we have considered from a multi-objective point of view the
training of classifiers when the costs of misclassification are unknown. Even in
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Fig. 9. Distances from the random classifier simplex. Negative distances correspond
to models in P . Left: Logistic regressor; Right: MLP.

Fig. 10. Decision regions for the logistic regression classifier (left) and MLP classifier
(right) furthest from the random allocation simplex. Solid lines show the ideal equal-
cost boundaries.

classification between two classes consideration of the costs of misclassification
leads naturally to a multi-objective problem which is conventionally visualised
using the receiver operating characteristic curve. The multi-objective optimi-
sation framework permits the ROC curve for Q = 2 classes to be naturally
generalised to a surface in Q(Q−1) dimensions in the general case. The result-
ing trade-off surface generalises the binary classification ROC curve because
on it one misclassification rate cannot be improved without degrading at least
one other. By viewing the classifier parameters and the misclassification costs
as a single entity, we have presented a straightforward general evolutionary
algorithm which is able to efficiently locate approximations to the optimal
ROC surface for binary and multi-class problems alike. We remark that this
algorithm is naturally able to handle other objectives (such as the warning
time given to air traffic controllers in the STCA example) that the system
designer must take into account.
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An appealing quality of the ROC curve is that it can be plotted in two
dimensions and an operating point selected from the plot. Unfortunately, the
dimension of the Pareto optimal ROC surface grows as the square of the
number of classes, which hampers visualisation. Projection into ‘false positive
space’ is an effective visualisation method for 3-class problems as the false pos-
itive rates summarise the gross overall performance, allowing further analysis
of exactly which classes are misclassified into which to be focused in particular
regions. We regard this method as more informative than approaches which
directly minimise the false positive rates [30], and therefore ignore how mis-
classifications are made. Nonetheless, it is likely that problems with more than
three classes will require some a priori assessment of the important trade-offs
because of the difficulty in interpreting 16 or more competing rates. Reliable
calculation and visualisation of the curvature of the ROC surface is current
work important for selecting operating points.

The Pareto optimal ROC surface yields a natural way of comparing clas-
sifiers in terms of the volume that the classifiers’ ROC surfaces dominate.
We defined and illustrated a generalisation of the Gini index for multi-class
problems that quantifies the superiority of a classifier to random allocation.
This naturally leads to a criterion for selecting an operating point: choose
the classifier most distant from the random allocation simplex. An alternative
measure for comparing classifiers in multi-class problems is the pairwise M
measure described by Hand and Till [19]. However this describes the overall
superiority of one classifier to another and does not permit selection of an
operating point.

Finally we remark that the evaluation of the classification rates is inher-
ently dependent on the available data. Here we have assumed that the data are
of sufficient number that we can ignore any uncertainty associated with the
particular data sample. Current research in this area involves bootstrapping
these data in order to quantify the uncertainty in the ROC curve or surface
[11] and the use of multi-objective optimisation in the presence of noise to
permit reliable discovery of the Pareto optimal front with small quantities of
data.
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G Beyer, J-L Fernández-Villacañas, and H-P Schwefel, editors, Parallel
Problem Solving from Nature—PPSN VII, Lecture Notes in Computer
Science, pages 44–53. Springer-Verlag, 2002.

[29] D. Lowe and M. E. Tipping. Feed-forward neural networks and topo-
graphic mappings for exploratory data analysis. Neural Computing and
Applications, 4:83–95, 1996.

[30] D. Mossman. Three-way ROCs. Medical Decision Making, 19(1):78–89,
1999.



24 Richard M. Everson and Jonathan E. Fieldsend

[31] F. Provost and T. Fawcett. Analysis and visualisation of classifier per-
formance: Comparison under imprecise class and cost distributions. In
Proceedings of the Third International Conference on Knowledge Discov-
ery and Data Mining, pages 43–48, Menlo Park, CA, 1997. AAAI Press.

[32] F. Provost and T. Fawcett. Robust classification systems for imprecise
environments. In Proceedings of the Fifteenth National Conference on
Artificial Intelligence, pages 706–7, Madison, WI, 1998. AAAI Press.

[33] B.D. Ripley. Neural networks and related methods for classification (with
discussion). Journal of the Royal Statistical Society Series B, 56(3):409–
456, 1994.

[34] M.J.J. Scott, M. Niranjan, and R.W. Prager. Parcel: feature sub-
set selection in variable cost domains. Technical Report CUED/F-
INFENG/TR.323, Cambridge University Engineering Department, 1998.

[35] F. Tortorella, editor. Pattern Recognition Letters: Special Issue on ROC
Analysis in Pattern Recognition, volume 26, 2006.

[36] D. Van Veldhuizen and G. Lamont. Multiobjective Evolutionary Algo-
rithms: Analyzing the State-of-the-Art. Evolutionary Computation, 8(2):
125–147, 2000.

[37] X. Yao, Y. Liu, and G. Lin. Evolutionary Programming Made Faster.
IEEE Transactions on Evolutionary Computation, 3(2):82–102, 1999.

[38] E. Zitzler and L. Thiele. Multiobjective Evolutionary Algorithms: A
Comparative Case Study and the Strength Pareto Approach. IEEE
Transactions on Evolutionary Computation, 3(4):257–271, 1999.

[39] M.H. Zweig and G. Campbell. Receiver-operating characteristic (ROC)
plots: a fundamental evaluation tool in clinical medicine. Clinical Chem-
istry, 39:561–577, 1993.


