524 research outputs found

    Density fluctuations from warm inflation

    Full text link
    Thermal fluctuations provide the main source of large scale density perturbations in warm inflationary models of the early universe. For the first time, general results are obtained for the power spectrum in the case when the friction coefficient in the inflaton equation of motion depends on temperature. A large increase in the amplitude of perturbations occurs when the friction coefficient increases with temperature. This has to be taken into account when constructing models of warm inflation. New results are also given for the thermal fluctuations in the weak regime of warm inflation when the friction coefficient is relatively small.Comment: 14 pages, 4 figures, ReVTe

    Non-gaussianity in the strong regime of warm inflation

    Full text link
    The bispectrum of scalar mode density perturbations is analysed for the strong regime of warm inflationary models. This analysis generalises previous results by allowing damping terms in the inflaton equation of motion that are dependent on temperature. A significant amount of non-gaussianity emerges with constant (or local) non-linearity parameter fNL∌20f_{NL}\sim 20, in addition to the terms with non-constant fNLf_{NL} which are characteristic of warm inflation.Comment: 15 pages, 3 figures. New plots in v

    Scalar perturbation spectra from warm inflation

    Full text link
    We present a numerical integration of the cosmological scalar perturbation equations in warm inflation. The initial conditions are provided by a discussion of the thermal fluctuations of an inflaton field and thermal radiation using a combination of thermal field theory and thermodynamics. The perturbation equations include the effects of a damping coefficient Γ\Gamma and a thermodynamic potential VV. We give an analytic expression for the spectral index of scalar fluctuations in terms of a new slow-roll parameter constructed from Γ\Gamma. A series of toy models, inspired by spontaneous symmetry breaking and a known form of the damping coefficient, lead to a spectrum with ns>1n_s>1 on large scales and ns<1n_s<1 on small scales.Comment: 12 pages, 5 figures, RevTeX 4, revised with extra figure

    Field propagation in de Sitter black holes

    Get PDF
    We present an exhaustive analysis of scalar, electromagnetic and gravitational perturbations in the background of Schwarzchild-de Sitter and Reissner-Nordstrom-de Sitter spacetimes. The field propagation is considered by means of a semi-analytical (WKB) approach and two numerical schemes: the characteristic and general initial value integrations. The results are compared near the extreme cosmological constant regime, where analytical results are presented. A unifying picture is established for the dynamics of different spin fields.Comment: 15 pages, 16 figures, published versio

    Can induced gravity isotropize Bianchi I, V, or IX Universes?

    Get PDF
    We analyze if Bianchi I, V, and IX models in the Induced Gravity (IG) theory can evolve to a Friedmann--Roberson--Walker (FRW) expansion due to the non--minimal coupling of gravity and the scalar field. The analytical results that we found for the Brans-Dicke (BD) theory are now applied to the IG theory which has ωâ‰Ș1\omega \ll 1 (ω\omega being the square ratio of the Higgs to Planck mass) in a cosmological era in which the IG--potential is not significant. We find that the isotropization mechanism crucially depends on the value of ω\omega. Its smallness also permits inflationary solutions. For the Bianch V model inflation due to the Higgs potential takes place afterwads, and subsequently the spontaneous symmetry breaking (SSB) ends with an effective FRW evolution. The ordinary tests of successful cosmology are well satisfied.Comment: 24 pages, 5 figures, to be published in Phys. Rev. D1

    Magnetic Fields in the Milky Way

    Full text link
    This chapter presents a review of observational studies to determine the magnetic field in the Milky Way, both in the disk and in the halo, focused on recent developments and on magnetic fields in the diffuse interstellar medium. I discuss some terminology which is confusingly or inconsistently used and try to summarize current status of our knowledge on magnetic field configurations and strengths in the Milky Way. Although many open questions still exist, more and more conclusions can be drawn on the large-scale and small-scale components of the Galactic magnetic field. The chapter is concluded with a brief outlook to observational projects in the near future.Comment: 22 pages, 5 figures, to appear in "Magnetic Fields in Diffuse Media", eds. E.M. de Gouveia Dal Pino and A. Lazaria

    Classical Yang-Mills Black hole hair in anti-de Sitter space

    Get PDF
    The properties of hairy black holes in Einstein–Yang–Mills (EYM) theory are reviewed, focusing on spherically symmetric solutions. In particular, in asymptotically anti-de Sitter space (adS) stable black hole hair is known to exist for frak su(2) EYM. We review recent work in which it is shown that stable hair also exists in frak su(N) EYM for arbitrary N, so that there is no upper limit on how much stable hair a black hole in adS can possess

    Current status of turbulent dynamo theory: From large-scale to small-scale dynamos

    Full text link
    Several recent advances in turbulent dynamo theory are reviewed. High resolution simulations of small-scale and large-scale dynamo action in periodic domains are compared with each other and contrasted with similar results at low magnetic Prandtl numbers. It is argued that all the different cases show similarities at intermediate length scales. On the other hand, in the presence of helicity of the turbulence, power develops on large scales, which is not present in non-helical small-scale turbulent dynamos. At small length scales, differences occur in connection with the dissipation cutoff scales associated with the respective value of the magnetic Prandtl number. These differences are found to be independent of whether or not there is large-scale dynamo action. However, large-scale dynamos in homogeneous systems are shown to suffer from resistive slow-down even at intermediate length scales. The results from simulations are connected to mean field theory and its applications. Recent work on helicity fluxes to alleviate large-scale dynamo quenching, shear dynamos, nonlocal effects and magnetic structures from strong density stratification are highlighted. Several insights which arise from analytic considerations of small-scale dynamos are discussed.Comment: 36 pages, 11 figures, Spa. Sci. Rev., submitted to the special issue "Magnetism in the Universe" (ed. A. Balogh

    Non-Gaussianities in Single Field Inflation and their Optimal Limits from the WMAP 5-year Data

    Full text link
    Using the recently developed effective field theory of inflation, we argue that the size and the shape of the non-Gaussianities generated by single-field inflation are generically well described by two parameters: f_NL^equil, which characterizes the size of the signal that is peaked on equilateral configurations, and f_NL^orthog, which instead characterizes the size of the signal which is peaked both on equilateral configurations and flat-triangle configurations (with opposite signs). The shape of non-Gaussianities associated with f_NL^orthog is orthogonal to the one associated to f_NL^equil, and former analysis have been mostly blind to it. We perform the optimal analysis of the WMAP 5-year data for both of these parameters. We find no evidence of non-Gaussianity, and we have the following constraints: -125 < f_NL^equil < 435, -369 < f_NL^orthog < 71 at 95% CL. We show that both of these constraints can be translated into limits on parameters of the Lagrangian of single-field inflation. For one of them, the speed of sound of the inflaton fluctuations, we find that it is either bounded to be c_s > 0.011 at 95% CL. or alternatively to be so small that the higher-derivative kinetic term dominate at horizon crossing. We are able to put similar constraints on the other operators of the inflaton Lagrangian.Comment: 46 pages, 12 figures. v2: JCAP published version. Added references and minor corrections. v3: Corrected minor typo in App.
    • 

    corecore