629 research outputs found

    Effect of aspect ratio on fire resistance of hollow core concrete floors

    Get PDF
    Previous studies have shown that the fire performance of hollowcore units is significantly affected by the end support conditions, but it has not been clear how the fire resistance of the overall floor system can be improved by providing side supports. The previous studies used beam grillage and shell elements to separately model the hollowcore units and the topping concrete slab using the platform of the non-linear finite element program SAFIR. The modelling method required a lot of computational resources and is not ideal to model a large floor area. This paper describes the effect of the side supports and the aspect ratio of the floor on the predicted fire resistance. It also compares the efficiencies of shell elements and short beam elements for finite element modelling of the topping concrete in fire conditions. The results show that integrating the topping concrete slab into the beam grillages reduces the complexity of the model and also provides satisfactory results. Side supports can increase the fire performance of hollowcore floor slabs provided that the spacing of the side supports does not greatly exceed the span length

    Effect of top reinforcing on the fire performance of continuous reinforced concrete beams

    Get PDF
    This paper examines the behaviour of continuous reinforced concrete beams exposed to fire on three sides, in order to investigate the effect of different lengths of the top reinforcing bars over the supports. The study was performed with 2D finite element analysis using SAFIR. The effect of continuity was investigated with rectangular crosssection beams spanning over two and three bays subjected to the ISO 834 fire. Compared to a single span beam, the continuous beams resisted the fire exposure for a longer period of time. It was found that different lengths of the top reinforcing bars resulted in different failure mechanisms, but did not greatly affect the fire resistance of the beams . The influence of the full process of fire development was analysed using the ISO fire for 30, 60 and 90 minutes followed by a decay phase. Structural failure only occurred if the fully developed phase of the fire continued until very close to the failure time reached with no decay phase

    Design of Steel Portal Frame Buildings for Fire Safety

    Get PDF
    This paper describes a study into the fire behaviour of steel portal frame buildings at elevated temperatures using the finite element programme SAFIR. The finite element analysis carried out in this report is three dimensional and covers different support conditions at the column bases, the presence of axial restraints provided by the end walls, different fire severities within the building, different levels of out-of-plane restraint to the columns and the effect of concrete encasement to the columns. From a large number of analyses, it is shown that the bases of the steel portal frames at the foundations must be designed and constructed with some level of fixity to ensure that the structure will deform in an acceptable way during fire, with no outwards collapse of the walls. The analyses also show that to avoid sidesway (i.e. collapse outwards) it is not necessary for steel portal frame columns to be fire-protected unless the designer wishes to ensure that the columns and the wall panels remain standing, during and after the fire

    Location of Plastic Hinges in Axially Loaded Steel Members

    Get PDF
    New Zealand and Australian steel structure design standards contain equations to encourage yielding at the ends of steel members rather than along their lengths. This paper evaluates the accuracy of these equations using a commercially available computer program as well as an analytical procedure. The analytical procedure considers non-linear geometric effects and material effects of the member stiffness by considering stability functions in conjunction with residual stress effects. New equations to prevent yielding away from the member ends, which are less conservative than the current code equations, are developed. Simplifications of these equations being considered for adoption into the New Zealand steel structure design standard are described

    One-Loop Amplitudes in Euclidean Quantum Gravity

    Full text link
    This paper studies the linearized gravitational field in the presence of boundaries. For this purpose, ζ\zeta-function regularization is used to perform the mode-by-mode evaluation of BRST-invariant Faddeev-Popov amplitudes in the case of flat Euclidean four-space bounded by a three-sphere. On choosing the de Donder gauge-averaging term, the resulting ζ(0)\zeta(0) value is found to agree with the space-time covariant calculation of the same amplitudes, which relies on the recently corrected geometric formulas for the asymptotic heat kernel in the case of mixed boundary conditions. Two sets of mixed boundary conditions for Euclidean quantum gravity are then compared in detail. The analysis proves that one cannot restrict the path-integral measure to transverse-traceless perturbations. By contrast, gauge-invariant amplitudes are only obtained on considering from the beginning all perturbative modes of the gravitational field, jointly with ghost modes.Comment: 26 pages, plain TeX, no figure

    Proximity effect at superconducting Sn-Bi2Se3 interface

    Get PDF
    We have investigated the conductance spectra of Sn-Bi2Se3 interface junctions down to 250 mK and in different magnetic fields. A number of conductance anomalies were observed below the superconducting transition temperature of Sn, including a small gap different from that of Sn, and a zero-bias conductance peak growing up at lower temperatures. We discussed the possible origins of the smaller gap and the zero-bias conductance peak. These phenomena support that a proximity-effect-induced chiral superconducting phase is formed at the interface between the superconducting Sn and the strong spin-orbit coupling material Bi2Se3.Comment: 7 pages, 8 figure

    Heavy Quarks and Heavy Quarkonia as Tests of Thermalization

    Full text link
    We present here a brief summary of new results on heavy quarks and heavy quarkonia from the PHENIX experiment as presented at the "Quark Gluon Plasma Thermalization" Workshop in Vienna, Austria in August 2005, directly following the International Quark Matter Conference in Hungary.Comment: 8 pages, 5 figures, Quark Gluon Plasma Thermalization Workshop (Vienna August 2005) Proceeding

    Centrality Dependence of the High p_T Charged Hadron Suppression in Au+Au collisions at sqrt(s_NN) = 130 GeV

    Get PDF
    PHENIX has measured the centrality dependence of charged hadron p_T spectra from central Au+Au collisions at sqrt(s_NN)=130 GeV. The truncated mean p_T decreases with centrality for p_T > 2 GeV/c, indicating an apparent reduction of the contribution from hard scattering to high p_T hadron production. For central collisions the yield at high p_T is shown to be suppressed compared to binary nucleon-nucleon collision scaling of p+p data. This suppression is monotonically increasing with centrality, but most of the change occurs below 30% centrality, i.e. for collisions with less than about 140 participating nucleons. The observed p_T and centrality dependence is consistent with the particle production predicted by models including hard scattering and subsequent energy loss of the scattered partons in the dense matter created in the collisions.Comment: 7 pages text, LaTeX, 6 figures, 2 tables, 307 authors, resubmitted to Phys. Lett. B. Revised to address referee concerns. Plain text data tables for the points plotted in figures for this and previous PHENIX publications are publicly available at http://www.phenix.bnl.gov/phenix/WWW/run/phenix/papers.htm

    Single Electrons from Heavy Flavor Decays in p+p Collisions at sqrt(s) = 200 GeV

    Get PDF
    The invariant differential cross section for inclusive electron production in p+p collisions at sqrt(s) = 200 GeV has been measured by the PHENIX experiment at the Relativistic Heavy Ion Collider over the transverse momentum range $0.4 <= p_T <= 5.0 GeV/c at midrapidity (eta <= 0.35). The contribution to the inclusive electron spectrum from semileptonic decays of hadrons carrying heavy flavor, i.e. charm quarks or, at high p_T, bottom quarks, is determined via three independent methods. The resulting electron spectrum from heavy flavor decays is compared to recent leading and next-to-leading order perturbative QCD calculations. The total cross section of charm quark-antiquark pair production is determined as sigma_(c c^bar) = 0.92 +/- 0.15 (stat.) +- 0.54 (sys.) mb.Comment: 329 authors, 6 pages text, 3 figures. Submitted to Phys. Rev. Lett. Plain text data tables for the points plotted in figures for this and previous PHENIX publications are (or will be) publicly available at http://www.phenix.bnl.gov/papers.htm

    Nuclear Modification of Electron Spectra and Implications for Heavy Quark Energy Loss in Au+Au Collisions at sqrt(s_NN)=200 GeV

    Get PDF
    The PHENIX experiment has measured mid-rapidity transverse momentum spectra (0.4 < p_T < 5.0 GeV/c) of electrons as a function of centrality in Au+Au collisions at sqrt(s_NN)=200 GeV. Contributions from photon conversions and from light hadron decays, mainly Dalitz decays of pi^0 and eta mesons, were removed. The resulting non-photonic electron spectra are primarily due to the semi-leptonic decays of hadrons carrying heavy quarks. Nuclear modification factors were determined by comparison to non-photonic electrons in p+p collisions. A significant suppression of electrons at high p_T is observed in central Au+Au collisions, indicating substantial energy loss of heavy quarks.Comment: 330 authors, 6 pages text, 3 figures. Submitted to Phys. Rev. Lett. Plain text data tables for the points plotted in figures for this and previous PHENIX publications are (or will be) publicly available at http://www.phenix.bnl.gov/papers.htm
    corecore