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ABSTRACT 

 

New Zealand and Australian steel structure design standards contain 

equations to encourage yielding at the ends of steel members rather than 

along their lengths. This paper evaluates the accuracy of these equations 

using a commercially available computer program as well as an analytical 

procedure. The analytical procedure considers non-linear geometric effects 

and material effects of the member stiffness by considering stability 

functions in conjunction with residual stress effects. New equations to 

prevent yielding away from the member ends, which are less conservative 

than the current code equations, are developed. Simplifications of these 

equations being considered for adoption into the New Zealand steel 

structure design standard are described.  

 

INTRODUCTION  

 

The New Zealand and Australian steel codes (SNZ, 1997; SAA, 1975) have a check 

that is not present in the codes of many other countries. This check aims to restrict the 

formation of plastic hinges away from the ends of the columns.  That is, they desire 

the bending moment diagram to be that in Figure 1a, rather than that in Figure 1b. 

This is because: 

i) the region beside the plastic hinges can be effectively braced to restrict local 

and laterally buckling to ensure inelastic rotational deformation capacity is 

not decreased, and  

ii) the correct collapse mechanism and hinge rotation demands may be predicted 

(Lay, 1975).  

 

 

 

 

 

 

 

 

(a) Plastic Hinge at Member End (b) Plastic Hinge within Member Length 

Figure 1. Moment Patterns for Different Hinge Positions 

(based on Lay, 1975) 
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The tendency for hinges to occur within the member length rather that at the member 

ends is dependent on three parameters: firstly, the axial force ratio, N
*
/Ns, where N

*
 is 

the applied axial force and Ns is the section axial yield force; secondly, the ratio of the 

member end moments, β, which is computed as the smaller absolute moment divided 

by the larger absolute moment where positive means double curvature; and thirdly the 

slenderness of the member which is often represented by λ, a non-dimensional factor 

given by Equations 1 and 2 for members with compact sections, where NOL is the 

Euler buckling force, k is the effective length factor, L is the actual length of the 

member, r is the radius of gyration about the axis of bending, σY is the material yield 

stress, and E is Young’s modulus for steel. Furthermore, the magnitudes of the 

moments are also important if the member is to yield. 
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Clause 8.4.3.2 in NZS 3404 (SNZ, 1997) specifies that for members with various 

slenderness and moment ratios, that the axial force ratio, N
*
/(φNs), be given by 

Equations 3 and 4, where φ is the resistance factor. These are referred to as Lay’s 
equations. A plot of the permitted N

*
/(φNs), for a particular slenderness limit, λ, and 

moment ratio, β, based on Equations 3 and 4 is given in Figure 2. It can be seen that 
there is a discontinuity at the axial force ratio of 0.15.  
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Figure 2. Axial Force Limits for Different Member Slenderness and End 

Moment Ratio 

 

For axial force ratios, N
*
/(φNs), greater than 0.15, the source book (Lay, 1975) states 

that Equation 3 is adopted by curve fitting the column deflection curve data in Lay’s 

PhD thesis for high axial load members, in conjunction with an analytical approach to 

keep the hinges away from the member ends. It is also developed to guarantee 

rotation capacity, but the degree of rotation capacity provided by these equations is 

not described. Lay’s thesis (Lay, 1964) does present this equation for the case of β = 0, 
but the exact means by which the equation was developed was not clear, and the 

comparison of the data and the equation were not shown.  

 

For low axial force ratios, that is when N
*
/(φNs) is less than 0.15, Equation 4 was 

developed from elastic stability considerations with the maximum moment in the 

column being limited to less than 1.05 of the design moment at the column ends. The 

equation is then linearized for easy application. The value of 1.05 indicated that for 

these members with low axial forces, yielding is permitted to occur away from the 

member ends. Lay argues that this is reasonable because these members act as beams 

due to their low axial force, and yielding away form the member ends is not likely to 

be detrimental. It should be noted that in this equation when β is unity, indicating 
double curvature, the axial force ratio in Equation 4 is limited by Euler buckling 

alone.  

 

The New Zealand steel code (SNZ, 1997) has provisions to ensure rotation capacity of 

a hinge at the end of the member by providing limitations on the axial force ratio. For 

this reason, other equations are not needed to provide rotation capacity as well as to 

ensure that yielding occurs at the member end, but they are only required to ensure 

that yielding occurs at the member end.  

 

Based on the discussion above it may be seem that the background for Equation 3 is 

not clear; it is not apparent how reasonable this equation is to prevent end yielding; 

there is an undesirable discontinuity in Lay’s equations; the approach to obtain the 

two equations is different; and the NZ code already has criteria for ensuring 
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deformation capacity if the yielding occurs at the column end. Therefore, there is a 

need to evaluate Lay’s equations to determine how well they describe when yielding 

is likely to occur away from, rather than at, the column ends, and to develop new 

equations if these are found to be inadequate.  

 

Two different analysis tools were used to evaluate the reasonableness of the end 

yielding criteria (EYC) in Lay’s equations. A computer program ‘Dr. Frame’ (Dr. 

Software, 1998) was used for the case when the column was elastic, and an analytical 

approach was developed considering stability functions and the effect of residual 

stresses on the member flexural stiffness. 

MODEL DEVELOPMENT 

Dr. Frame Analysis 

 

The analysis tool ‘Dr. Frame’ (Dr. Software, 1998) is capable of performing a second 

or higher order analysis using the correct stability functions for axial tension and 

compression using real-time analysis and visual updating. It also reduces the flexural 

stiffness of the member due to axial force as a result of residual stresses and out-of-

straightness using information from the AISC column curve (AISC 2005).  

 

In order to determine the axial force ratio at which the maximum member moment 

moves away from the member ends as a function of end moment ratio, β, and 
slenderness, λ, the following approach was used. A simply supported member was 

set-up as shown in Figure 3 and the members were provided with specific member 

properties. The ‘Second Order Geometric Effects’ were selected and the Resistance 

Factors’ were turned off, under ‘Modeling’ tool bars. The ‘EI Dependency’ was 

turned off for the elastic analysis. The end moments were then applied for a specified 

end moment ratio, β. The magnitude of the moment is not important. The member 

length, L, was then chosen such that the initial member slenderness, λ, is 0.1. A small 

axial force was initially applied. It was gradually increased until the maximum 

moment moves away from the member ends. This was easily identified because the 

bending moment diagram is calculated instantaneously by the program as shown in 

Figure 3. The axial force when moment just moves away from the member end is 

recorded. At this stage the axial force may be increased further until the member 

becomes unstable giving the Euler buckling force of the member. The process above 

was repeated for different lengths incrementing λ by 0.1 each time until a value of 5 is 

reached. This gives relationship between N
*
/Ns and λ for a chosen end moment ratio. 

The process was repeated to obtain relationships for end -moment ratios, β, of  -1.0, -
0.5, 0.0, +0.5 and +1.0. If inelastic behavior is desired based on the AISC column 

curve, then the process can be repeated by turning on the ‘EI Dependency’. However, 

instead of the Euler buckling curve, the AISC column strength curve is obtained when 

the member become unstable.  
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Figure 3. Dr. Frame Window Interface 

Analytical Model 

 

The analysis tool was developed from first principles to independently evaluate Lay’s 

equations. This model allowed consideration of the residual stress and out-of-

straightness assumed for columns in the New Zealand/Australian codes which are 

different than that assumed in the US code (AISC, 2001). The model was derived 

based on stability functions which consider the reduction in stiffness from the axial 

force due to geometric nonlinearity. The inelastic flexural stiffness of member was 

also incorporated in the model to consider the reduction in stiffness from the axial 

force due to material nonlinearity, which mainly due to residual stress effects on the 

member according to tangent stiffness buckling theory. The tool was developed using 

the computer program ‘MATLAB’ (MATLAB, 2005). Description about the stability 

function and inelastic stiffness approaches used are given below: 

(a) Beam-Column Stability Functions 

 

For a uniform steel column member such as that shown in Figure 4, when the effect 

of compressive axial force is considered on elastic column stiffness the relationship 

between lateral displacement at end A, vA, lateral displacement at end B, vB, rotation 

at end A, θA, rotation at end B, θB, to the shear force at end A, VA, shear force at end B, 

VB, moment at end A, MA and moment at end B, MB is given in 44×  matrix form in 

Equation 5 (MacRae, 1999) where I is the column second moment of area. 
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Figure 4. Beam-Column Member 
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If the member is broken into two parts as illustrated in Figure 5 where L1 << L2, and 

the moment applied at node A is greater than that at node C, then the moment at node 

B, MB, may be found using the following approach. The stability matrices for each 

sub-member can be combined to form a global stiffness matrix as shown in Equation 

11 which is a 4x4 matrix as vA and vC in Figure 5 are zero. As the externally applied 

moments at A and C are specified, and the external forces at B are equal to zero, the 

deformation terms may be found. These deformations can then be fed back into a 3×3 
sub-member stiffness matrix, such as that in Equation 12, to obtain MB. The axial 

force which causes the maximum moment to move away from the supports may be 

identified as that which causes MB to be greater than MA. A sensitivity study (Peng et 

al. 2006) showed that when L1 is less than 0.01L, the axial force causing the moment 

to move is not sensitive to L1 but the computational analysis time became excessive as 

L1 became smaller so L1 was taken as 0.01L. Also, the axial force required to cause 

the determinant of the total member stiffness matrix to be zero was equal to the total 

member Euler buckling load for a range of sub-member lengths thereby verifying the 

matrix formulation above.   

 

    

 
 

 

Figure 5. Member with Two Internal Degrees of Freedom 
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(b) Effect of Axial Force on Flexural Stiffness and Buckling Force 

 

Tangent stiffness buckling theory is used to determine the effective flexural stiffness, 

(EI)t, of a member subject to axial force as a result of section inelasticity. This theory 

recognizes the effects of residual stresses on the behaviour. For example, a steel 

section with the stress distribution shown in Figure 6(b) is likely to have an average 

stress-average strain diagram as shown in Figure 7. It may be seen that the tangent 

stiffness decreases as the axial force increases as a result of yielding at points (i) to (iv) 

as shown in Figure 8. In this figure the thicker line corresponds to yielding of the 

section. This reduction in axial stiffness indicates that buckling is more likely to occur 

than if the section remains elastic.  

 

 
 (a) Steel I-section (b) Typical initial residual stress pattern 

 

Figure 6. Steel Cross-Section Axes and Initial Stresses 

 

 

 

 

 

 

 

 

 

Figure 7. Schematic Axial Average Stress (P/A) – Average Strain (∆∆∆∆/L) Plot 
 

 

(i) 

σy 

(ii) 
(iii) 

(iv) 

P/A 
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  (i) (ii)  (iii) (iv) 

Figure 8. States of Yielding at Different Applied Axial Compressive Forces  

 

 

The bending stiffness, EI, also reduces as the axial force on the section increases as 

shown in Figure 9. The tangent stiffness for an elastic-perfectly plastic (EPP) 

material is given by Equation 13 where Ie is the second moment of area for the elastic 

portion of the section about the bending axis considered. 

 

 (EI)t = E Ie (13) 

 

Figure 9(a) shows that the effect of the yielding would be expected to cause a more 

rapid decrease in bending resistance about the weak axis, rather than about the strong 

axis, as the weak axis second moment of area, Iye, is more sensitive to yielding at the 

extremities of the flanges, than is Ixe as shown in Figure 9(b). 

 

 

 

 

 

 

 

 

 

             

  

 

 

  (a) Idealised tangent flexural stiffness (b) Effective portion of the section  

Figure 9. Schematic Axial Stress Effect on Tangent Fexural Stiffness 
 

The concept of the effective stiffness may be used to develop a column design curve 

for member under axial compression. That is the column buckling curve for an 

inelastic column, Nc, can therefore be written according to Equation 14 which is the 

same equation used to obtain the Euler buckling strength, NOL, except that (EI)t rather 

than (EI) is used, where (EI)t is a function of the axial force level and the axis of 

buckling. This is the dark curve in Figure 10. It may be seen that the inelastic 

buckling curve has a lower strength for a given effective length than does the elastic 

buckling curve. 
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Figure 10. Schematic of Inelastic and Elastic Buckling Curves for a Steel Column 

 

If the effective flexural stiffness, (EI)t, were known it could be used with the stability 

equations to determine when the maximum moment moves away from the column 

end. Unfortunately, it is usually not directly available. However, because the column 

design curve, which is often a similar shape to the inelastic curve shown in Figure 10 

is known, it is possible to use the difference between the column design curve and the 

Euler buckling curve to evaluate (EI)t as a function of axial force. This can be carried 

out using the following information. 

 

At a specific axial compressive force, N
”
, the effective lengths corresponding to the 

inelastic and elastic buckling curves, (kL)t and (kL)e, are given by Equations 15 and 

16 respectively.  
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In general, the value of (kL)e for the axial force level, N”, may be computed, and 

these values of (kL)t for the axial force level, N”, may be obtained from a design code 

for a specific section type. In this case, the effective stiffness, (EI)t, may be computed 

from Equation 17. The effective stiffness could equally well be obtained from the 

ratio of (kL/r) squared or λ squared because the length is just scaled by a constant in 
these cases.  
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For the New Zealand steel code, there are 5 column buckling curves for different 

types of section, described by section constants, αb, as shown in Figure 11. These 

curves not only consider the initial residual stress effect but also the effect of member 

out-of-straightness and accidental non-concentric loading. Consequently, (EI)t values 
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based on these curves will be underestimated compared to that for residual stresses 

only. Hence, the analytical model derived in this study, which based on the New 

Zealand column design curves, is likely to be more conservative than if these effects 

are not being included.  
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Figure 11. Elastic and Inelastic Column Curve in NZS 3404 

(c) Analysis Procedure 

 

The analysis procedure used to determine the axial force that will cause yielding away 

from the member ends for a specific column and moment ratio is iterative considering 

the reduction in member stiffness due to both geometric (stability function) and 

material (residual stress) nonlinearity. Firstly, a member is chosen with particular 

characteristics described by the parameters L, As, σy, E, I, αb and β. Then a low axial 
force, N,  is chosen. For this axial force, the effective stiffness, (EI)t, is computed 

using Equation 17 for the specific column curve selected. Here, (kL)t is obtained by 

iteration because it cannot be obtained explicitly from the NZ code equations. Next, 

the effective stiffness is used in the stability equations as described previously to 

determine whether or not MB is greater than MA in Figure 5 indicating that the 

maximum moment had moved away from the end of the member. If MB is less than 

MA then the axial load is gradually increased until it is. The axial force corresponding 

to this situation is the critical force for that member and moment ratio. Analyses were 

carried out for many different section slendernesses, the 5 column types and for 

different moment ratios.  
 

The analytical model was checked against Dr. Frame and the Euler buckling curve to 

ensure that it modelled the Euler buckling curve well. The analytical method to 

evaluate the axial force associated with movement of the peak moment away from the 

member end was also verified successfully against Dr. Frame for the inelastic case.  

ANALYTIC ESTIMATES AND COMPARISONS 

 

The axial force levels that cause the maximum moment to occur away from the 

member ends are shown in a form similar to that of Figure 2 in Figure 12 for 

different moment ratios, β. It may be seen that: 

(i) Lay’s equations (from NZS 3404) tend to be conservative for members with 

axial force ratios greater than 0.15.  
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(ii) Lay’s equations tend to be non-conservative for members with axial force 

ratios less than 0.15. This is to be expected because the equations were 

developed assuming that the member moment be no more than 1.05 times the 

end moment. 

(iii) The column buckling curves from the analyses are continuous, and therefore 

more rational than Lay’s equations which have a discontinuity at an axial 

force ratio of 0.15. 

 (iv) The results from Dr. Frame matched the analysis. The difference arises where 

Dr. Frame is based on LRFD curve and the analytical model is base on NZS 

3404 column curves.    
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(e) β  = +1 

Figure 12 – Comparison of NZS 3404, MATLAB  

and Dr. Frame for Different Moment Ratios β  

 

6. Proposed End Yielding Equation and Amendments to NZS 3404 

 

There is no closed form for the curves given in Figure 12. Empirical equations are 

therefore developed for the end yielding criteria, EYC, to make the information more 

useful to designers. Regression with an exponential function was used to obtain 

Equation 18. Three parameters are required in this EYC equation. These vary with 

column types with different residual stresses, αb, as shown in Table 1. 
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Table 1. Coefficients for Column Types  

αb A B C 

1 0.235 0.95 0.21 

0.5 0.247 0.91 0.19 

0 0.263 0.88 0.19 

-0.5 0.265 0.92 0.17 

-1 0.276 0.87 0.19 

 

It may be seen in Figure 13 that the proposed equation is generally more conservative 

than the analysis results, especially for columns with axial force ratio greater than 0.5. 

As β approaches 1, the shape of the EYC curve is harder to be fitted using an 
exponential function. Subsequently, the conservatism in the proposed equation 

increases for more highly axial loaded members. However, it should be noted that the 

axial force ratio is usually less than 0.5 for a general column. Hence, the proposed 

equation would provide suitable limits within the normal design range.  

  

The proposed equations are much closer to the actual EYC curves than is NZS 3404. 

Adoption of the proposed equations would reduce the conservatism on column size in 

the current design guidelines. In addition, the proposed equation does not have a 

discontinuity.  
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    (e) β  = +1 

Figure 13. Comparison of NZS 3404, Analysis Results and Proposed EYC 

Equation for Different ββββ 
 

Clifton suggests (Peng et al. 2006) that for design purposes the EYC equation be 

simplified further and that αb be considered to be zero for all column types resulting 

in Equation 19. This is non-conservative for negative bα  values as seen in Figure 12 

especially for high axial forces, but this non-conservatism may balance the 

conservatism in Equation 19 for high axial forces. Equation 19 is still more 

conservative than the Lay's equations for low axial forces. 
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CONCLUSIONS 

 

Procedures are developed considering both geometric and material non-linearity 

effects on the column stiffness to determine the level of axial force that causes 

yielding to occur away from, rather than at the ends of steel columns. It was found 

that: 

1. Current New Zealand and Australian steel structure design standard equations 

generally significantly underestimate the axial force corresponding to yielding 

occurring away from, the member end, for columns with compressive axial 

force ratios greater than 0.15. However, the design standard equations for 

columns with lower axial forces are generally overestimated. This currently 

results in conservative designs for columns with high axial forces, and non-

conservative designs for columns with low axial forces. 

2. New design equations were proposed to describe the level of axial force 

corresponding to migration of the location of the plastic hinge away from the 

member end. These equations do not contain a discontinuity, as current design 

standard equations do, and they significantly better match the expected 

behaviour. These equations are likely to result in smaller column sizes than 

those obtained with current codes. 
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