12 research outputs found

    Novel variants in the PRDX6 Gene and the risk of Acute Lung Injury following major trauma

    Get PDF
    <p>Abstract</p> <p>Background</p> <p>Peroxiredoxin 6 (<it>PRDX6</it>) is involved in redox regulation of the cell and is thought to be protective against oxidant injury. Little is known about genetic variation within the PRDX6 gene and its association with acute lung injury (ALI). In this study we sequenced the <it>PRDX6 </it>gene to uncover common variants, and tested association with ALI following major trauma.</p> <p>Methods</p> <p>To examine the extent of variation in the <it>PRDX6 </it>gene, we performed direct sequencing of the 5' UTR, exons, introns and the 3' UTR in 25 African American cases and controls and 23 European American cases and controls (selected from a cohort study of major trauma), which uncovered 80 SNPs. <it>In silico </it>modeling was performed using Patrocles and Transcriptional Element Search System (TESS). Thirty seven novel and tagging SNPs were tested for association with ALI compared with ICU at-risk controls who did not develop ALI in a cohort study of 259 African American and 254 European American subjects that had been admitted to the ICU with major trauma.</p> <p>Results</p> <p>Resequencing of critically ill subjects demonstrated 43 novel SNPs not previously reported. Coding regions demonstrated no detectable variation, indicating conservation of the protein. Block haplotype analyses reveal that recombination rates within the gene seem low in both Caucasians and African Americans. Several novel SNPs appeared to have the potential for functional consequence using <it>in silico </it>modeling. Chi<sup>2 </sup>analysis of ALI incidence and genotype showed no significant association between the SNPs in this study and ALI. Haplotype analysis did not reveal any association beyond single SNP analyses.</p> <p>Conclusions</p> <p>This study revealed novel SNPs within the <it>PRDX6 </it>gene and its 5' and 3' flanking regions via direct sequencing. There was no association found between these SNPs and ALI, possibly due to a low sample size, which was limited to detection of relative risks of 1.93 and above. Future studies may focus on the role of <it>PRDX6 </it>genetic variation in other diseases, where oxidative stress is suspected.</p

    Optimum duration of neoadjuvant letrozole to permit breast conserving surgery

    No full text
    The aim of this multicenter, prospective, longitudinal phase IV study was to establish the optimal duration of neoadjuvant letrozole that would allow breast conservation surgery (BCS) in patients with early breast cancer who were initially unsuitable. Primary, invasive, estrogen-receptor- and/or progesterone-receptor-positive breast cancer patients, with large tumors (≥T2 i.e., >20 mm) not initially suitable for BCS, received 2.5 mg letrozole p.o. daily. Patients continued treatment until they became eligible for BCS, progressed, failed to meet criteria for BCS and withdrew for scheduled mastectomy, withdrew for other reasons, or completed 12 months of letrozole treatment without a BCS decision being made. A total of 146 patients were enrolled; seven patients who did not have a valid postbaseline tumor assessment were excluded from the final efficacy analysis. At study closure, 69 % of patients (96 of 139) were eligible for BCS. The median time to achieve a tumor response sufficient to allow BCS with neoadjuvant letrozole was 7.5 months (95 % CI 6.3–8.5 months). Letrozole was well tolerated, and most adverse events were mild-to-moderate (grade 1–2). The results from this trial suggest that extended letrozole therapy in the neoadjuvant setting (7.5 months), as opposed to conventional treatment of 4 months, is optimal to achieve maximum reduction in tumor volume sufficient for BCS

    Advancing precision medicine for acute respiratory distress syndrome

    No full text
    Acute respiratory distress syndrome (ARDS) is a heterogeneous clinical syndrome. Understanding of the complex pathways involved in lung injury pathogenesis, resolution, and repair has grown considerably in recent decades. Nevertheless, to date, only therapies targeting ventilation-induced lung injury have consistently proven beneficial, and despite these gains, ARDS morbidity and mortality remain high. Many candidate therapies with promise in preclinical studies have been ineffective in human trials, probably at least in part due to clinical and biological heterogeneity that modifies treatment responsiveness in human ARDS. A precision medicine approach to ARDS seeks to better account for this heterogeneity by matching therapies to subgroups of patients that are anticipated to be most likely to benefit, which initially might be identified in part by assessing for heterogeneity of treatment effect in clinical trials. In October 2019, the US National Heart, Lung, and Blood Institute convened a workshop of multidisciplinary experts to explore research opportunities and challenges for accelerating precision medicine in ARDS. Topics of discussion included the rationale and challenges for a precision medicine approach in ARDS, the roles of preclinical ARDS models in precision medicine, essential features of cohort studies to advance precision medicine, and novel approaches to clinical trials to support development and validation of a precision medicine strategy. In this Position Paper, we summarise workshop discussions, recommendations, and unresolved questions for advancing precision medicine in ARDS. Although the workshop took place before the COVID-19 pandemic began, the pandemic has highlighted the urgent need for precision therapies for ARDS as the global scientific community grapples with many of the key concepts, innovations, and challenges discussed at this workshop

    The Umbilical Cord Blood αβ T-Cell Repertoire: Characteristics of a Polyclonal and Naive but Completely Formed Repertoire

    No full text
    International audienceUmbilical cord blood (CB) constitutes a promising alternative to bone marrow for allogeneic transplantation and is increasingly used because of the reduced severity of graft-versus-host disease after CB transplantation. We have compared the T-cell receptor β chain (TCRB) diversity of CB lymphocytes with that of adult lymphocytes by analyzing the complementarity determining region 3 (CDR3) size heterogeneity. In marked contrast to adult samples, we observed bell-shaped profiles in all of the 22 functional β-chain variable (BV) subfamilies that reflect the lack of prior antigenic stimulation in CB samples. However, the mean CDR3 size and BV usage were comparable between CB and adult samples. BJ2 (65%) segments were used preferentially to BJ1 (35%), especially BJ2S7, BJ2S5, BJ2S3, and BJ2S1, in both CB and in adult lymphocytes. We therefore conclude that although naive as reflected by the heterogeneity of the CDR3 size, the TCRBV repertoire appears fully constituted at birth. The ability to expand TCRB subfamilies was confirmed by stimulation with staphylococcal superantigens toxic shock syndrome toxin-1 and staphylococcal enterotoxin A. This study provides the basis for future analysis of the T-cell repertoire reconstitution following umbilical CB transplantation
    corecore