1,874 research outputs found

    Targeted Cattle Grazing to Enhance Sage-Grouse Brood-Rearing Habitat

    Get PDF
    Often, greater sage-grouse (Centrocercus urophasianus) brood-rearing habitats dominated by dense mountain big sagebrush (Artemisia tridentata vaseyana; >10-25% canopy cover) limit important forbs and arthropods sage-grouse rely on during summer. We investigated whether protein supplementation could concentrate cattle during fall to reduce sagebrush canopy cover and increase the diversity and abundance of forbs and arthropods. We applied targeted cattle grazing within three large, contiguous pastures in the Beaverhead Mountains of southwestern Montana. In each pasture, we selected one 4-ha macroplot of dense sagebrush (>30%). Within each macroplot, we placed low-moisture block protein supplement in four microsites (78.5-m2) and compared cattle response to four untreated control microsites. The following summer we measured herbaceous canopy cover and composition, shrub canopy cover, ground cover, forb and arthropod diversity, and arthropod density for each treated and untreated microsites. Mountain big sagebrush canopy cover was 71% less in treated vs. untreated microsites (11% vs. 38% canopy cover, respectively; P <0.001). Bite count observations indicated that sagebrush cover was reduced by cattle trampling rather than browsing, as sagebrush comprised <1% of cattle diets. Forb diversity was 13% greater in treated microsites (P = 0.094), forb species richness was 16% greater in treated microsites (P = 0.044), and forb composition trended higher in treated microsites (45% of herbaceous composition in treated microsites vs. 32% in untreated microsites; P = 0.106). Lepidoptera density trended 18% greater in treated microsites (P = .133). Our results indicate that protein supplementation during late fall can concentrate cattle to enhance sage-grouse brood-rearing habitat

    Wild capuchin monkeys adjust stone tools according to changing nut properties

    Get PDF
    Animals foraging in their natural environments need to be proficient at recognizing and responding to changes in food targets that affect accessibility or pose a risk. Wild bearded capuchin monkeys (Sapajus libidinosus) use stone tools to access a variety of nut species, including otherwise inaccessible foods. This study tests whether wild capuchins from Serra da Capivara National Park in Brazil adjust their tool selection when processing cashew (Anacardium spp.) nuts. During the ripening process of cashew nuts, the amount of caustic defensive substance in the nut mesocarp decreases. We conducted field experiments to test whether capuchins adapt their stone hammer selection to changing properties of the target nut, using stones of different weights and two maturation stages of cashew nuts. The results show that although fresh nuts are easier to crack, capuchin monkeys used larger stone tools to open them, which may help the monkeys avoid contact with the caustic hazard in fresh nuts. We demonstrate that capuchin monkeys are actively able to distinguish between the maturation stages within one nut species, and to adapt their foraging behaviour accordingly

    Quantitative Proteomic and Metabolomic Profiling Reveals Altered Mitochondrial Metabolism and Folate Biosynthesis Pathways in the Aging Drosophila Eye

    Get PDF
    Aging is associated with increased risk of ocular disease, suggesting that age-associated molecular changes in the eye increase its vulnerability to damage. Although there are common pathways involved in aging at an organismal level, different tissues and cell types exhibit specific changes in gene expression with advanced age. Drosophila melanogaster is an established model system for studying aging and neurodegenerative disease that also provides a valuable model for studying age-associated ocular disease. Flies, like humans, exhibit decreased visual function and increased risk of retinal degeneration with age. Here, we profiled the aging proteome and metabolome of the Drosophila eye and compared these data with age-associated transcriptomic changes from both eyes and photoreceptors to identify alterations in pathways that could lead to age-related phenotypes in the eye. Of note, the proteomic and metabolomic changes observed in the aging eye are distinct from those observed in the head or whole fly, suggesting that tissue-specific changes in protein abundance and metabolism occur in the aging fly. Our integration of the proteomic, metabolomic, and transcriptomic data reveals that changes in metabolism, potentially due to decreases in availability of B vitamins, together with chronic activation of the immune response, may underpin many of the events observed in the aging Drosophila eye. We propose that targeting these pathways in the genetically tractable Drosophila system may help to identify potential neuroprotective approaches for neurodegenerative and age-related ocular diseases. Data are available via ProteomeXchange with identifier PXD027090

    The macroeconomics of aid: overview

    Get PDF
    This Special Issue explores macroeconomic effects of aid from various perspectives through a blend of studies, both conceptual and empirical in nature. The overall aim is to enhance the understanding of the macroeconomic dimensions of aid in the policy and research communities, and to inspire further innovative work in this important area. This opening article provides a scene setting summary of five generations of aid research, with a particular focus on how the JDS has contributed to this literature, and ends with an overview of the papers included in this Issue

    Avulsion cycles and their stratigraphic signature on an experimental backwater‐controlled delta

    Get PDF
    River deltas grow in large part through repeated cycles of lobe construction and channel avulsion. Understanding avulsion cycles is important for coastal restoration and ecology, land management, and flood hazard mitigation. Emerging theories suggest that river avulsions on lowland deltas are controlled by backwater hydrodynamics; however, our knowledge of backwater-controlled avulsion cycles is limited. Here, we present results from an experimental delta that evolved under persistent backwater hydrodynamics achieved through variable flood discharges, shallow bed-slopes, and subcritical flows. The experimental avulsion cycles consisted of an initial phase of avulsion setup, an avulsion trigger, selection of a new flow path, and abandonment of the parent channel. Avulsions were triggered during the largest floods (78% of avulsions) after the channel was filled by a fraction (0.3 ± 0.13) of its characteristic flow depth at the avulsion site, which occurred in the upstream part of the backwater zone. The new flow path following avulsion was consistently one of the shortest paths to the shoreline, and channel abandonment occurred through temporal decline in water flow and sediment delivery to the parent channel. Experimental synthetic stratigraphy indicates that the bed thicknesses were maximum at the avulsion sites, consistent with our morphologic measurements of avulsion setup and the idea that there is a record of avulsion locations and thresholds in sedimentary rocks. Finally, we discuss the implications of our findings within the context of sustainable management of deltas, their stratigraphic record, and predicting avulsions on deltas

    Abscesses due to mycobacterium abscessus linked to injection of unapproved alternative medication.

    Get PDF
    An unlicensed injectable medicine sold as adrenal cortex extract (ACE*) and distributed in the alternative medicine community led to the largest outbreak of Mycobacterium abscessus infections reported in the United States. Records from the implicated distributor from January 1, 1995, to August 18, 1996, were used to identify purchasers; purchasers and public health alerts were used to identify patients. Purchasers and patients were interviewed, and available medical records were reviewed. Vials of ACE* were tested for mycobacterial contamination, and the product was recalled by the U.S. Food and Drug Administration. ACE* had been distributed to 148 purchasers in 30 states; 87 persons with postinjection abscesses attributable to the product were identified. Patient and vial cultures contained M. abscessus identical by enzymatic and molecular typing methods. Unusual infectious agents and alternative health practices should be considered in the diagnosis of infections that do not respond to routine treatment

    Cellular Responses and Tissue Depots for Nanoformulated Antiretroviral Therapy.

    Get PDF
    Long-acting nanoformulated antiretroviral therapy (nanoART) induces a range of innate immune migratory, phagocytic and secretory cell functions that perpetuate drug depots. While recycling endosomes serve as the macrophage subcellular depots, little is known of the dynamics of nanoART-cell interactions. To this end, we assessed temporal leukocyte responses, drug uptake and distribution following both intraperitoneal and intramuscular injection of nanoformulated atazanavir (nanoATV). Local inflammatory responses heralded drug distribution to peritoneal cell populations, regional lymph nodes, spleen and liver. This proceeded for three days in male Balb/c mice. NanoATV-induced changes in myeloid populations were assessed by fluorescence-activated cell sorting (FACS) with CD45, CD3, CD11b, F4/80, and GR-1 antibodies. The localization of nanoATV within leukocyte cell subsets was determined by confocal microscopy. Combined FACS and ultra-performance liquid chromatography tandem mass-spectrometry assays determined nanoATV carriages by cell-based vehicles. A robust granulocyte, but not peritoneal macrophage nanoATV response paralleled zymosan A treatment. ATV levels were highest at sites of injection in peritoneal or muscle macrophages, dependent on the injection site. The spleen and liver served as nanoATV tissue depots while drug levels in lymph nodes were higher than those recorded in plasma. Dual polymer and cell labeling demonstrated a nearly exclusive drug reservoir in macrophages within the liver and spleen. Overall, nanoART induces innate immune responses coincident with rapid tissue macrophage distribution. Taken together, these works provide avenues for therapeutic development designed towards chemical eradication of human immunodeficiency viral infection

    Cellular Responses and Tissue Depots for Nanoformulated Antiretroviral Therapy.

    Get PDF
    Long-acting nanoformulated antiretroviral therapy (nanoART) induces a range of innate immune migratory, phagocytic and secretory cell functions that perpetuate drug depots. While recycling endosomes serve as the macrophage subcellular depots, little is known of the dynamics of nanoART-cell interactions. To this end, we assessed temporal leukocyte responses, drug uptake and distribution following both intraperitoneal and intramuscular injection of nanoformulated atazanavir (nanoATV). Local inflammatory responses heralded drug distribution to peritoneal cell populations, regional lymph nodes, spleen and liver. This proceeded for three days in male Balb/c mice. NanoATV-induced changes in myeloid populations were assessed by fluorescence-activated cell sorting (FACS) with CD45, CD3, CD11b, F4/80, and GR-1 antibodies. The localization of nanoATV within leukocyte cell subsets was determined by confocal microscopy. Combined FACS and ultra-performance liquid chromatography tandem mass-spectrometry assays determined nanoATV carriages by cell-based vehicles. A robust granulocyte, but not peritoneal macrophage nanoATV response paralleled zymosan A treatment. ATV levels were highest at sites of injection in peritoneal or muscle macrophages, dependent on the injection site. The spleen and liver served as nanoATV tissue depots while drug levels in lymph nodes were higher than those recorded in plasma. Dual polymer and cell labeling demonstrated a nearly exclusive drug reservoir in macrophages within the liver and spleen. Overall, nanoART induces innate immune responses coincident with rapid tissue macrophage distribution. Taken together, these works provide avenues for therapeutic development designed towards chemical eradication of human immunodeficiency viral infection

    Loss of Nmp4 optimizes osteogenic metabolism and secretion to enhance bone quality

    Get PDF
    A goal of osteoporosis therapy is to restore lost bone with structurally sound tissue. Mice lacking the transcription factor Nuclear Matrix Protein 4 (Nmp4, Zfp384, Ciz, ZNF384) respond to several classes of osteoporosis drugs with enhanced bone formation compared to wild type (WT) animals. Nmp4-/- mesenchymal stem/progenitor cells (MSPCs) exhibit an accelerated and enhanced mineralization during osteoblast differentiation. To address the mechanisms underlying this hyper-anabolic phenotype, we carried out RNA-sequencing and molecular and cellular analyses of WT and Nmp4-/- MSPCs during osteogenesis to define pathways and mechanisms associated with elevated matrix production. We determined that Nmp4 has a broad impact on the transcriptome during osteogenic differentiation, contributing to the expression of over 5,000 genes. Phenotypic anchoring of transcriptional data was performed for the hypothesis-testing arm through analysis of cell metabolism, protein synthesis and secretion, and bone material properties. Mechanistic studies confirmed that Nmp4-/- MSPCs exhibited an enhanced capacity for glycolytic conversion- a key step in bone anabolism. Nmp4-/- cells showed elevated collagen translation and secretion. Expression of matrix genes that contribute to bone material-level mechanical properties were elevated in Nmp4-/- cells, an observation that was supported by biomechanical testing of bone samples from Nmp4-/- and WT mice. We conclude that loss of Nmp4 increases the magnitude of glycolysis upon the metabolic switch, which fuels the conversion of the osteoblast into a super-secretor of matrix resulting in more bone with improvements in intrinsic quality
    corecore