
Loss of Nmp4 optimizes osteogenic metabolism and secretion to enhance bone quality 1 2 
Yu Shao1, Emily Wichern2, Paul J. Childress3, 4, Michele Adaway2, Jagannath Misra5, Angela 3 
Klunk2, David B. Burr2, 4, 6, Ronald C. Wek5, Amber L. Mosley5, Yunlong Liu1, Alexander G. 4 
Robling2, 4, Nickolay Brustovetsky7, James Hamilton7, Kylie Jacobs8, Deepak Vashishth9, Keith 5 
R. Stayrook10, Matthew R. Allen2, 4, 11, Joseph M. Wallace3, 4, 6, ¶ Joseph P Bidwell1, 2, 4¶6 

1. Department of Medical and Molecular Genetics, Indiana University School of Medicine7 
(IUSM), Indianapolis, IN, 462028 

2. Department of Anatomy & Cell Biology, Indiana University School of Medicine (IUSM)9 
3. Department of Orthopaedic Surgery, IUSM10 
4. Indiana Center for Musculoskeletal Health11 
5. Department of Biochemistry & Molecular Biology, IUSM12 
6. Department of Biomedical Engineering, Indiana University-Purdue University at13 

Indianapolis, IN, 4620214 
7. Department of Pharmacology & Toxicology, IUSM15 
8. Department of Microbiology & Immunology, IUSM16 
9. Center for Biotechnology & Interdisciplinary Studies (Rm 2213) and Department of17 

Biomedical Engineering, Rensselaer Polytechnic Institute, 110 8th Street, Troy, NY18 
12180, USA19 

10. Lilly Research Laboratories, Eli Lilly and Company, Indianapolis, Indiana 4620220 
11. Roudebush Veterans Administration Medical Center, Indianapolis, IN21 

Running title: Nmp4 regulates bone matrix secretion 22 
Key terms: Metabolism, osteoporosis, parathyroid hormone, raloxifene, Seahorse Assay, 23 
transcriptome, ultimate stress, yield stress 24 25 

___________________________________________________________________

This is the author's manuscript of the article published in final edited form as:
Shao, Y., Wichern, E., Childress, P. J., Adaway, M., Misra, J., Klunk, A., … Bidwell, J. P. (2019). Loss of Nmp4 optimizes osteogenic 
metabolism and secretion to enhance bone quality. American Journal of Physiology-Endocrinology and Metabolism. 
https://doi.org/10.1152/ajpendo.00343.2018

https://doi.org/10.1152/ajpendo.00343.2018


¶Corresponding Authors: 26 
Joseph P. Bidwell 27 
Department of Anatomy & Cell Biology 28 
Indiana University School of Medicine 29 
Medical Science Bldg 5035, 635 Barnhill Drive 30 
Indianapolis, IN 46202 31 
E-mail: jbidwell@iupui.edu 32 
 33 
Joseph M. Wallace 34 
Department of Biomedical Engineering  35 
Indiana University-Purdue University at Indianapolis 36 
SL 220 37 
Indianapolis, IN 46202 38 
E-mail: jmwalla@iupui.edu 39 
 40 
Yu Shao and Emily Wichern contributed equally to this study. 41 
Disclosure statement: Y.S, E.W., P.J.C., M.A., J.M, A.K., D.B.B., R.C.W., A.L.M., Y.L., A.G.R, 42 
N.B., J.H., K.J., D.V., M.R.A., J.M.W, and J.P.B. have nothing to disclose. K.R.S. is an 43 
employee of Eli Lilly and Company  44 
  45 



ABSTRACT:  46 
A goal of osteoporosis therapy is to restore lost bone with structurally sound tissue. Mice lacking 47 
the transcription factor Nuclear Matrix Protein 4 (Nmp4, Zfp384, Ciz, ZNF384) respond to 48 
several classes of osteoporosis drugs with enhanced bone formation compared to wild type 49 
(WT) animals. Nmp4-/- mesenchymal stem/progenitor cells (MSPCs) exhibit an accelerated and 50 
enhanced mineralization during osteoblast differentiation. To address the mechanisms 51 
underlying this hyper-anabolic phenotype, we carried out RNA-sequencing and molecular and 52 
cellular analyses of WT and Nmp4-/- MSPCs during osteogenesis to define pathways and 53 
mechanisms associated with elevated matrix production. We determined that Nmp4 has a broad 54 
impact on the transcriptome during osteogenic differentiation, contributing to the expression of 55 
over 5,000 genes. Phenotypic anchoring of transcriptional data was performed for the 56 
hypothesis-testing arm through analysis of cell metabolism, protein synthesis and secretion, and 57 
bone material properties. Mechanistic studies confirmed that Nmp4-/- MSPCs exhibited an 58 
enhanced capacity for glycolytic conversion- a key step in bone anabolism. Nmp4-/- cells 59 
showed elevated collagen translation and secretion. Expression of matrix genes that contribute 60 
to bone material-level mechanical properties were elevated in Nmp4-/- cells, an observation that 61 
was supported by biomechanical testing of bone samples from Nmp4-/- and WT mice. We 62 
conclude that loss of Nmp4 increases the magnitude of glycolysis upon the metabolic switch, 63 
which fuels the conversion of the osteoblast into a super-secretor of matrix resulting in more 64 
bone with improvements in intrinsic quality.  65 
  66 



INTRODUCTION: 67 
Osteoporosis is a disease of attenuated bone mass and strength that significantly 68 

increases the risk of fragility fractures (92). Teriparatide (PTH) and abaloparatide (PTHrP) are 69 
currently the only FDA-approved osteoanabolic therapies for this disease (52, 61). These drugs 70 
add new bone to the osteoporotic skeleton whereas the primary effect of anti-catabolic drugs is 71 
a reduction in the pathologically elevated bone resorption (30). The benefits of PTH treatment 72 
include an increase in bone mass through a combination of new bone modeling and the 73 
sustained bone remodeling with a positive balance as well as improved bone material properties 74 
(13, 18, 29, 32, 59). However, the potency of PTH precipitously declines and there is an FDA-75 
mandated two-year limit on treatment (18), emphasizing the need for new strategies that 76 
improve the efficacy of the drug, such as by combining hormone treatment with an anti-catabolic 77 
drug or targeting PTH directly to bone (26, 83). Neutralizing intrinsic pathways that temper PTH-78 
induced osteoblast secretion of bone matrix might improve drug efficacy. Indeed, a similar 79 
strategy of “inhibiting the inhibitor” (46) has led to the development of the osteoanabolic 80 
romosozumab, a monoclonal antibody that neutralizes the action of the osteoinhibitory protein 81 
sclerostin, currently under consideration by the FDA for clinical approval (3, 94).  82 

We reported that the transcription factor Nuclear Matrix Protein 4 (Nmp4, Zfp384, Ciz, 83 
ZNF384) suppresses the action of osteoanabolics (15, 16, 41, 70, 90, 95) and thus elucidation 84 
of the upstream and downstream effectors in the Nmp4 pathway may provide a map of the 85 
innate barriers to PTH-induced bone formation. Indeed, as a trans-acting protein Nmp4 is well 86 
positioned to control multiple aspects of bone formation. Genome-wide Chromatin 87 
Immunoprecipitation followed by high-throughput sequencing (ChIP-seq) analysis in MC3T3-E1 88 
cells suggested that Nmp4 has wide ranging effects on the transcriptome, with over 15,000 89 
Nmp4 binding sites in the osteoblast genome. Of importance, nearly 70% of these sites are 90 
within -5 and +2 kb from a transcription start site (TSS) or within introns, both DNA regions that 91 
often harbor regulatory regions (16).  92 



Nmp4-/- mice exhibit more bone marrow osteoprogenitors than their WT littermates (16, 93 
41, 95). Expanded cultures of Nmp4-/- mesenchymal stem/progenitor cells (MSPCs) induced 94 
with osteogenic medium exhibit elevated mRNA expression of the bone matrix proteins type I 95 
collagen (Col1a1), osteocalcin (Bglap2), and osteopontin (Spp1). Additionally, the anabolic 96 
process of ribosome biogenesis is elevated in these cells, as is the expression of Gadd34 97 
(PPP1r15a), which helps maintain translation and ultimately contributes to the continued 98 
trafficking of secretory protein through the endoplasmic reticulum (ER) despite increased protein 99 
loads (16, 20, 114).  100 

To address the cellular pathways by which Nmp4 suppresses osteoblast-mediated bone 101 
formation we performed high-throughput RNA sequencing (RNA-seq) of WT and Nmp4-/- 102 
expanded MSPCs during osteogenesis.  Network analyses of the RNA-seq output were used for 103 
driving hypothesis testing, i.e. select pathways that were significantly altered in the 104 
transcriptome were evaluated experimentally. The results phenotypically anchored bioinformatic 105 
predictions to changes in metabolic and biochemical properties of the Nmp4-/- osteogenic cells. 106 
Based on the RNA-seq data we hypothesized that Nmp4-/- osteoblasts elaborate a matrix that 107 
improves bone material and structural characteristics. Therefore we examined these bone 108 
properties from experimental WT and Nmp4-/- mice that had undergone various osteoporosis 109 
therapies. These data reveal new aspects of how loss of Nmp4 alters bone matrix secretion as 110 
well as the impact of this single gene on bone quality. 111 
 112 
MATERIALS AND METHODS 113 
Cell culture: MSPCs were derived from individual mice as previously described (16, 109). Briefly, 114 
long bone marrow (BM) was harvested from euthanized mice 6–8 weeks of age, and a Ficoll 115 
gradient was used to isolate the mononuclear cells. These cells were seeded in Mesencult 116 
MediaTM + Mesencult Stimulatory SupplementTM (StemCell Technologies, Vancouver Canada) 117 
and sustained for 3–4 weeks without passage while fed every 5–7 days by removing 50% of the 118 



old media and adding 50% fresh media, so as not to disturb the cells. Upon reaching 80% 119 
confluence, the cells were passaged at 1:3 dilution for 2 additional passages before use in 120 
experiments or were frozen for stock vials. Cells were used for study between passages 5–10. 121 
To assess the mineralization phenotype of each MSPC preparation, cells were seeded in α-122 
MEM supplemented with 100 IU/mL penicillin, 100 µg/mL streptomycin, 25 µg/mL amphotericin, 123 
2 mM L-glutamine (Gibco BRL, Life technologies; Grand Island, NY, USA) and 10% fetal bovine 124 
serum (Sigma-Aldrich, St. Louis, MO). At 48 hours post-seeding the medium was refreshed and 125 
further supplemented with ascorbic acid (5 µg/mL; Sigma-Aldrich), dexamethasone (10 nM; 126 
Sigma-Aldrich), and 10 mM glycerol 2-phosphate disodium salt hydrate (BGP) (Sigma-Aldrich). 127 
To visualize the mineralization in culture, cells were stained with alizarin red as previously 128 
described (16).  129 
 130 
RNA-seq analysis: To compare transcriptome profiles of non-differentiating and osteogenic-131 
differentiating WT and Nmp4-/- MSPCs, cells were seeded into 12-well plates at either 10,000 132 
cells/well (25 cells/mm2) or 25,000 cells/well (62 cells/mm2). The cells seeded at the lower 133 
density were maintained in Mesencult MediaTM + Mesencult Stimulatory SupplementTM (non-134 
differentiating medium) for 3 days post-seeding and then harvested for total RNA. Cells plated 135 
at the higher density were maintained in α-MEM complete medium throughout the experiment. 136 
At 48 hours post-seeding the medium was refreshed with the ascorbic acid, dexamethasone, 137 
and BGP supplement. These cells were harvested at 7 days post-seeding as early osteogenic 138 
cells. 139 

Total RNA was harvested using RNeasy (Qiagen, Valencia, CA) and measured for 140 
quality using the Agilent 2100 Bioanalyzer, and Qubit 2.0 Fluorometer. High RNA integrity is 141 
critical for evaluating the transcriptome. The RNA integrity number (RIN) is an algorithm for 142 
assigning integrity values to RNA measurements and assigns an electropherogram a value of 1 143 
to 10, with 10 being the least degraded. All RIN numbers for our samples ranged between 8.2-144 



9.7. A conservative cut-off value in the context of RNA degradation lies between 6.4 and 7.9 145 
(31), well below our values.  Four technical replicates were harvested for each time point and 146 
genotype. Total RNA samples were submitted to the Beijing Genomics Institute (BGI) for 147 
transcriptome sequencing. In brief, magnetic beads with Oligo (dT) were used to isolate mRNA. 148 
The mRNA was fragmented and then constructed into HiSeq 2000 strand-specific libraries. The 149 
2 × 100-nt paired-end reads were generated by Illumina HiSeqTM 2000. Clean reads filtered from 150 
raw sequence reads were returned from BGI. Raw reads were filtered into clean reads by 151 
employing the following rules: (i) remove reads in which the percentage of bases with quality 152 
<10 was >50%; (ii) remove reads in which unknown bases were more than 10%; (iii) remove 153 
reads with adapters; (iv) map the clean reads to Mus musculus reference mm10 using STAR 154 
(version 2.4.2a) (23); (v) gene-based expression levels were quantified with featureCounts (58); 155 
(vi) differential expression of genes across different treatments was determined with edgeR (88) 156 
[GEO accession number GSE112694] 157 

RNA-seq determines the relative amount of each gene in each RNA sample but does 158 
not provide any measure of the total RNA output on a per-cell basis. This can be important 159 
when some genes are very highly expressed in one sample but not another (89), which is the 160 
case for our Nmp4-/- phenotype. We have previously shown that the Nmp4-/- MSPCs express 161 
upwards to 2-fold more RNA/cell than WT cells (114). Therefore we used GusB as a scaling 162 
factor for the present RNA-seq data since our previous work identified GusB as an appropriate 163 
normalizer for microarray data (16). 164 

Pathway enrichment analysis was performed using the Ingenuity Pathway Analysis 165 
software (IPA, Ingenuity Systems, Inc., Redwood City, CA, USA) to distinguish significant 166 
canonical pathways in which the Differentially Expressed Genes (DEGs) identified in the WT 167 
and Nmp4-/- samples were enriched. Fisher’s exact test was used to compute a p-value that 168 
denotes the probability of the DEGs in the pathway being found together due to random chance. 169 



We also applied the Benjamini-Hochberg false discovery rate (FDR) (q <0.05) correction to 170 
account for multiple comparisons in the IPA. 171 
We define a candidate Nmp4 direct target gene as a gene whose expression is altered with the 172 
loss of Nmp4 and also supports Nmp4 occupancy. To identify candidate genes we performed 173 
Venn diagram analysis with the gene lists from the present RNA-seq dataset and lists derived 174 
from our previous study of the Nmp4 genome-wide occupancy by ChIP-Seq in MC3T3-E1 175 
preosteoblasts (16). This cell line is an established in vitro model for osteoblastogenesis. Genes 176 
that were identified as supporting Nmp4 occupancy exhibited ChIP-seq peaks within -5 to +2 kb 177 
from a transcription start site (TSS) and/or within the range defined by the TSS and the 178 
transcription end site, and not within the promoter range of the same gene (Table S1 179 
https://figshare.com/s/aef3382cdc7c02151e6f, GEO accession number GSE112693 for 180 
complete ChIP-Seq dataset) (16). Additionally, we further refined this definition by using only 181 
genes contained in both the ChIP-seq and RNA-seq lists. 182 
 183 
Seahorse assay: Four independent MSPC cell preparations were used in the metabolic stress 184 
tests. The MSPCs 1957RWT and 1957NKO were derived from male littermates obtained from an 185 
Nmp4+/- x Nmp4+/- cross. The 1584LWT and 1515RRKO MSPCs were derived from mice obtained 186 
from different litters and different parents. Cells were seeded into an XFe24 well plate and 187 
grown for ~24hrs in culture. MSPCs were then subjected to mitochondrial stress tests using 188 
oligomycin, carbonyl cyanide-4 (trifluoromethoxy) phenylhydrazone (FCCP), rotenone, and 189 
antimycin A per the manufacturer’s instructions (Seahorse Biosciences, Lexington, MA). 190 
Glycolysis stress tests were performed using oligomycin and 2-deoxy-D-glucose (Seahorse 191 
Biosciences). After each analysis, total cell number was quantified and normalized to O2 192 
consumption rate (OCR) or extracellular acidification rate (ECAR), respectively. Glycolytic and 193 
mitochondrial stress tests were repeated 4-5 times each (biological replicates). We pooled all 194 



data (each well) obtained from the glycolytic or mitochondrial tests as technical replicates for 195 
statistical analysis. 196 
 197 
Collagen secretion analysis: All six independent MSPC cell preparations were used in the 198 
collagen secretion assays including 1957RWT, 1584LWT, 2001RLWT, 1957NKO, 1515RRKO, and 199 
1986RKO. Collagen levels were determined using the Sircol assay (Biocolor Ltd, Carrickfergus, 200 
Northern Ireland) (1, 62). Non-differentiating WT and Nmp4-/- MSPCs, cells were seeded into 201 
12-well plates at 10,000-20,000 cells/well (25-50 cells/mm2). These cells were maintained in 202 
Mesencult MediaTM + Mesencult Stimulatory SupplementTM (non-differentiating medium) for 4 203 
days post-seeding. To harvest the acid soluble fraction, cultures were washed twice with ice-204 
cold PBS and then scraped into PBS containing 0.5M acetic acid and digested overnight at 4-205 
8°C. The samples were then snap frozen. Collagen was concentrated from these acid-soluble 206 
fractions and then analyzed according to the manufacturer’s instructions. The collagen amount 207 
was normalized to cell number or presented as collagen/well vs. cell number/well. All 208 
experiments were repeated at least twice. All the data shown in the assays are an average of at 209 
least 4-5 different wells per group. 210 
 211 
Col1a1 polysome analysis: Preparations from four independent MSPC cell preparations, 212 
designated 1957RWT, 1957NKO, 1584LWT, and 1515RRKO, were used to measure collagen 213 
mRNA in polysomes. Equal amounts of WT and Nmp4-/- MSPCs were cultured into 10cm 214 
culture plates and maintained in Mesencult MediaTM + Mesencult Stimulatory SupplementTM for 215 
4 days. On Day 4, cycloheximide was added to each culture dish for 10min prior to harvesting. 216 
Cells were rinsed with ice-cold phosphate-buffered saline (PBS) solution containing 50 µg/ml 217 
cycloheximide and then lysed with 500µl of cold lysis buffer containing 10mM Tris-HCl (pH 7.4), 218 
300mM KCl, 10mM MgCl2, 1mM DTT and 50µg/ml cycloheximide, followed by centrifugation at 219 
13000 rpm for 10min at 4°C. Cell lysates were then applied to the top of 10-50% sucrose 220 



gradients and subjected to ultracentrifugation in a Beckman SW41Ti rotor at 40,000 rpm for 2 h 221 
at 4°C. Using a piston gradient fractionator, polysome profiles of each sample was recorded at 222 
254 nM by a UV monitor with Data Quest software as described previously (103). TRIzol LS 223 
reagent (Life Technologies, Inc) was used to purify RNA present in each of the sucrose gradient 224 
fractions. To insure that there was uniform RNA preparation between fractions, equal amount of 225 
firefly luciferase mRNA was added to each fraction. RNA prepared from equal volumes of each 226 
fraction was then used as a template for cDNA synthesis utilizing the TaqMan RT kit (Life 227 
Technologies, Inc.). The qPCR analyses of firefly luciferase and Col1a1 transcripts were 228 
measured as described previously (2). Equal amounts of firefly luciferase mRNA was measured 229 
in each of the fractions. Primer sequences for both transcripts were Col1a1 F: 5'-230 
ACGTCCTGGTGAAGTTGGTC-3', R: 5'-CAGGGAAGCCTCTTTCTCCT-3'; firefly luciferase F: 231 
5’-CCAGGGATTTCAGTCGATGT-3’, R: 5’-AATCTCACGCAGGCAGTTCT-3’. Experiments 232 
were carried out two independent times with similar results.  233 
 234 
Mice: WT and Nmp4-/- mice were generated as previously described and maintained at Indiana 235 
University Bioresearch Facility School of Dentistry (90). Briefly the strategy for preparing the 236 
global Nmp4-/- mice involved removing the region of this gene containing coding exons 4 – 7 via 237 
homologous recombination (90). The correctly targeted embryonic stem (ES) cell lines from 238 
129SvEv ES clones were microinjected into C57BL/6J blastocysts and the chimeric mice were 239 
crossbred with the C57BL/6J mice (The Jackson Laboratory, Bar Harbor, ME) to generate 240 
germline transmission. These mice were backcrossed for seven generations on the C57BL/6J 241 
background. Their WT littermates were used as the control mice for these experiments. The 242 
mice were housed, 2-4 mice/cage, under a 12hr light/12 hour dark regimen and Labdiet Rodent 243 
5001 diet was provided ad libitum. The Indiana University Institutional Animal Care and Use 244 
Committee approved all experimental procedures described in the present study.  245 
 246 



Therapies: At 10 weeks of age virgin female mice were randomly sorted into eight treatment 247 
groups by weight and genotype. Each mouse received two sequential 100µl injections/day 248 
containing the drugs or vehicle(s) 7 days/week for 7 weeks. Mice in select groups were injected 249 
subcutaneously with synthetic human PTH (hPTH) 1–34 acetate salt (Bachem Americas, Inc. 250 
Torrance, CA) at 30 µg/kg/d, daily, a dose often used in rodents to evaluate PTH bone anabolic 251 
action in vivo (37, 63). The dose of the anti-catabolic agent raloxifene (RAL, Sigma-Aldrich) is 252 
based on human clinical doses. RAL is normally administered as a 60mg daily dose, therefore 253 
based on a 60kg patient the quantity would be 1 mg/kg/day. The assumption is 100% 254 
absorption therefore the full dose was administered as a subcutaneous injection (95). Our 255 
euthanasia protocol involves using carbon dioxide inhalation at 20%V/min followed by bilateral 256 
pneumothorax or cervical dislocation in compliance with the guidelines of our Animal Care and 257 
Use Committee. This is an approved method by the Panel on Euthanasia of the American 258 
Veterinary Medical Association. 259 
 260 
Micro-computed tomography (μCT): Femurs and L5 vertebra were dissected from the 17 week-261 
old mice. The femurs were soaked in 0.9% saline, wrapped with gauze and stored at –20°C. 262 
The L5 vertebra were transferred to 10% formalin for 2 days and then stored in 70% ethanol. 263 
Left femurs were thawed to room temperature and scanned while hydrated with a 8.5 μm voxel 264 
size using a Skyscan 1172 µCT system (176 mA, 0.5 mm Aluminum filter). Scans were 265 
reconstructed with voxel attenuation coefficients ranging from 0-0.11, a beam hardening 266 
correction of 40%, and a ring artifact correction of 5. Mineral density was calculated using daily 267 
scans of manufacturer supplied hydroxyapatite (HA) phantoms of 0.25 g/cm3 and 0.75 g/cm3. L5 268 
vertebrae were scanned with a 6 μm voxel size using the Skyscan 1172 µCT system (176 mA, 269 
0.5 mm Aluminum filter). Scans were reconstructed with voxel attenuation coefficients ranging 270 
from 0-0.08, a beam hardening correction of 20%, and a ring artifact correction of 10. Three-271 
dimensional reconstructions using Skyscan software provided femur and L5 vertebra trabecular 272 



bone volume per total volume (BV/TV, %). Parameters obtained for femoral cortical bone 273 
included total cross-sectional area (CSA, mm2), marrow area (mm2), cortical thickness (mm), 274 
periosteal bone surface (BS, mm), endocortical BS (mm), anterior-posterior width (AP, mm), 275 
medial-lateral width (ML, mm), AP/ML, moment of inertia about the AP axis (Iap, mm4), moment 276 
of inertia about the ML axis (Iml, mm4), maximum moment of inertia (Imax, mm4), minimum 277 
moment of inertia (Imin, mm4), medial extreme (mm), and tissue mineral density (TMD, g/cm3 HA).   278 
 279 
Mechanical testing: Left femurs from each animal were thawed to room temperature and 280 
monotonically tested to failure in three-point bending at a displacement rate of 0.025 mm/sec 281 
using a support span of 9 mm (4). The bones were oriented in the anterior-posterior direction 282 
with the anterior side in tension. The moment of inertia about the medial-lateral axis and the 283 
extreme fiber in the anterior direction were obtained from the μCT images using a seven slice 284 
region centered on the failure site, and were utilized to map load-displacement to stress-strain, 285 
employing standard beam bending equations. Structural-level mechanical and tissue-level 286 
material properties were then obtained from the load-displacement and stress-strain curves. 287 
 288 
Statistical analysis: We used the statistical package JMP version 7.0.1 (SAS Institute, Cary, NC) 289 
to evaluate osteoporosis treatment response in our experimental mice. We tested three 290 
experimental therapies and a vehicle control using two genotypes of mice, yielding a total of 291 
eight treatment groups. Outliers in the datasets were identified using the interquartile range 292 
(IQR) method to assess statistical dispersion (68). The remaining data were analyzed with a 2-293 
way ANOVA for effects of genotype and treatment followed by a Tukey-Kramer post hoc test for 294 
comparison of more than two groups or Student t post hoc test for comparing WT and Nmp4-/- 295 
parameters as two groups. Experimental data were sorted by either treatment or genotype to 296 
determine whether either or both influenced the value of the endpoint parameter and whether 297 
genotype affected the response to treatment (genotype x treatment interaction). To assess if the 298 



combination treatment provided a synergistic effect over the mono-therapies we performed 2-299 
way ANOVA tests using PTH and RAL as the independent variables on both WT and Nmp4-/- 300 
datasets. Statistical significance was set at p≤0.05. To evaluate the metabolic profiles of the 301 
MSPCs, we used the Statistical Analysis System version 9.4 (SAS Institute) and JMP to perform 302 
student t-tests in comparing specific metabolic parameters. Finally, ggplot2 was used to create 303 
all the heatmaps, volcano plots, and boxplots (107). 304 
 305 
RESULTS:  306 
Nmp4 regulates a large portion of the osteogenic transcriptome 307 

We previously showed that expanded cultures of Nmp4-/- bone marrow MSPCs exhibited 308 
a precocious and enhanced mineralization compared to WT cells (16). For the present study, 309 
three independently derived WT MPSCs from individual isogenic mice, along with three Nmp4-/- 310 
preparations confirmed that the null cells exhibited mineralization typically within 1 week of 311 
exposure to osteogenic medium compared to 2-3 weeks for the WT cells (Figure 1A). 312 

To address the mechanism for the hyper-anabolic phenotype elicited by loss of Nmp4, 313 
we performed transcriptome analysis on osteogenic MSPCs as a guide for hypothesis testing. 314 
Given that there were some variations in time to mineralization between the individual Nmp4+/+ 315 
and Nmp4-/- MSPC preparations, we elected to carry out RNA-seq on the MSPCs 1584LWT vs. 316 
1515RRNmp4-/- under two distinct culture conditions. These cells exhibited a striking difference in 317 
the time to mineralization onset. We then carried out the critical phenotypic anchoring 318 
experiments with the other MSPC preparations as well as the WT and Nmp4-/- mice to show that 319 
our findings are broadly applicable.  320 

To perform RNA-seq analysis, RNA was harvested from cells at Day 3 post-seeding that 321 
were maintained in non-differentiation medium and at Day 7 in culture in which the cells had 322 
been transferred to osteogenic medium 48hrs post-seeding. All data obtained from these 323 
studies including the differences observed in mRNA expression between the WT and Nmp4-/- 324 



MPSCs at different time points following exposure to osteogenic medium are provided in Table 325 
S2 https://figshare.com/s/aef3382cdc7c02151e6f. A volcano plot shows that Nmp4-deleted 326 
cells cultured in non-differentiating medium for 3 days displayed significant ≥ 2-fold change in 327 
the expression of 5032 genes compared to WT. Of these, there was an increase in the 328 
expression of 3468 genes and a decrease in expression of 1564 genes (Figure 1B). Following 329 
this criterion, the expression profiles of 8438 genes were not significantly affected by Nmp4 330 
status (Figure 1B).  331 

Loss of Nmp4 had a similar impact on the transcriptome of MSPCs maintained in the 332 
osteogenic differentiating medium and harvested at Day 7, which coincided with the initiation of 333 
mineralization. At the 7-day time point, the expression profiles of 5313 genes were significantly 334 
altered by ≥ 2-fold, with 3925 genes presenting an elevation in expression compared to WT 335 
cells and 1388 genes showing a decrease (Figure 1B). Nmp4 status did not impact the 336 
expression of 8151 genes in cells maintained in the osteogenic medium (Figure 1B).  337 

We recently reported a genome-wide ChIP-seq analysis of Nmp4 binding in MC3T3-E1 338 
pre-osteoblasts that identified over 15,000 binding sites for this transcription factor (16). This cell 339 
line is an established in vitro model for early osteoblastogenesis that is similar to our primary 340 
MSPCs. To identify genes that are direct targets of Nmp4, we determined the overlap of the 341 
gene lists derived from the present MSPC RNA-seq datasets and those lists derived from our 342 
previous analysis of Nmp4 genome-wide ChIP-Seq analysis (16). The gene list used from the 343 
ChIP-seq dataset contained genes that had 1 or more peaks associated with the transcription 344 
start site (TSS) within -5 to +2 kb from a TSS and/or within the range defined by the TSS and 345 
the transcription end site (TES), and not within the promoter range of the same gene (Table S1) 346 
(16). Additionally, we limited the compilation to 4786 and 4787 genes expressed by our MSPCs 347 
for days 3 and 7 in culture respectively. The Venn diagrams revealed that about 28% of the 348 
genes occupied by Nmp4 exhibited a significant increase in expression upon loss of this 349 



transcription factor after 3 and 7 days in culture, indicating gene repression by Nmp4. By 350 
contrast, ~9% showed a decrease in expression upon loss of Nmp4 suggesting that Nmp4 351 
functions to directly activate these gene targets (Figures 1D & 1E). Expression of ~63% of the 352 
genes that supported Nmp4 with significant occupancy were not strongly impacted by loss of 353 
Nmp4, suggesting that Nmp4 status alone is not sufficient to alter the expression of these genes 354 
(Figures 1D & 1E). We conclude that in this osteogenic context Nmp4 has an extensive 355 
influence on the MSPC and osteogenic transcriptomes consistent with its widespread 356 
occupancy in their genomic landscapes.  357 
 358 
Loss of Nmp4 alters pathways that exhibit the dual functions of driving osteogenesis and 359 
glycolysis 360 

To identify cellular pathways sensitive to Nmp4 status, we performed IPA (Ingenuity 361 
pathway analysis)-based network analyses on the 5032 genes that exhibited a significant 362 
change in expression between the Nmp4-/- and WT cells at Day 3 (non-differentiating medium) 363 
and on the 5313 genes that exhibited a change in expression at Day 7 (osteogenic medium) in 364 
culture. Tables S3 and S4 list the 252 significant canonical pathways derived from transcriptome 365 
analysis of Day 3 and the 201 significant canonical pathways derived from analysis of Day 7 366 
cells, respectively https://figshare.com/s/aef3382cdc7c02151e6f. The large number of affected 367 
pathways is consistent with the substantial number of genes whose expression is influenced by 368 
Nmp4 status.  369 

Many of the canonical pathways listed in Tables S3 & S4 were also identified in previous 370 
studies characterizing MSC transcriptomic changes during osteogenic differentiation (11, 72, 371 
80), thus supporting our experimental approach. For example, transforming growth factor-β 372 
(TGF-β) signaling, IGF1, Wnt/β-catenin signaling, and bone morphogenic protein (BMP) 373 
signaling all appear to support human adipose-derived stem cells (hASC) and bone marrow 374 



stromal cell (BMSC) osteogenesis. Additionally, many pathways related to the triggering of cell 375 
cycle, growth, differentiation, and migration, such as axonal guidance signaling, platelet-derived 376 
growth factor signaling (PDGF signaling), integrin signaling, and actin cytoskeleton signaling, 377 
have previously been distinguished in these MSPC preparations (11, 72, 80) and were identified 378 
here.  379 

In our hypothesis-generating screen of the IPA outcomes we identified several pathways 380 
predicted to be sensitive to Nmp4 status and drive both osteogenesis and metabolic 381 
reprogramming necessary for fueling the development of the professional secretory osteoblast 382 
(Tables S3 and S4) (56, 79, 81, 96). Several pathways were common to cells harvested on 383 
either Day 3 or Day 7 and we present some of these data in graphical form for Day 7 (Figures 384 
2A & 2B). The bar graphs in Figure 2A are color-coded to reflect the z-score calculated by the 385 
IPA algorithm, which predicts the direction of change for the pathway upon loss of Nmp4. An 386 
absolute z-score of  2 or more is considered significant. The activation state of the pathway is 387 
predicted to be increased if the z-score is ≥ 2 and these bars are color coded with an orange 388 
hue. Conversely, bar graphs with a blue hue indicate a z-score  ≤ −2 representing canonical 389 
pathways with a decreased activity. Those pathways represented with a grey bar (z = NaN) 390 
indicate that the z-score algorithm cannot predict whether the pathway activity is increased or 391 
decreased in the Nmp4-/- cells.  392 

The bar graphs in Figure 2B are color coded to reflect the percentage of genes in a 393 
particular pathway whose expressions are upregulated (red) or downregulated (green). For 394 
example, the Wnt/Ca+2 signaling pathway z scores were +3.00Day3/+3.77Day7, (Figure 2A; Tables 395 
S3 and S4) indicating that loss of Nmp4 enhances the activity of this pathway. Additionally a 396 
high percentage of the genes in this pathway exhibited a significant increase in expression in 397 
the Nmp4-/- MSPCs (Figure 2B). This is significant to the Nmp4-/- osteoblast phenotype since 398 
Wnt signaling is a major driver of bone anabolism and advances osteogenesis in part through its 399 
stimulation of glycolysis (27). The IPA's Molecule Activity Predictor (MAP) algorithm allowed 400 



simulating the effects of disabling Nmp4 on the Wnt signaling pathway, which predicted 401 
elevated beta catenin activity, a key driver of osteogenesis (49), and the attenuated activity of 402 
Nemo-like kinase (NLK), a suppressor of beta-catenin transcriptional activity and osteogenesis 403 
(9, 44, 74) (Figure 3). The accompanying Wnt pathway heatmap (Figure 3) suggests this 404 
predicted increase in Wnt signaling activity is based, in part, on the diminished expression of 405 
numerous Wnt inhibitors including Wif1, Sfrp1, Sfrp2, and Apc2 (7, 101).  406 

Of interest, loss of Nmp4 significantly enhanced the expression of Dkk2 mRNA (see 407 
heatmap Figure 3). Depending on the cellular context Dkk2 can stimulate or inhibit Wnt 408 
signaling (55, 64). For example, Dkk2 is essential for osteoblast terminal differentiation, 409 
mineralization and may be a novel mediator of the PTH-induced anabolic response in bone (57, 410 
111). The activities of the Igf1 (z = +4.13Day3) and the Nrf2 signaling pathways (z = +4.33Day3

; 411 
+4.23Day7) were predicted to be upregulated in Nmp4-/- cells and although loss of Nmp4 was 412 
projected to alter the Hif1α signaling pathway the direction of activity could not be ascertained (z 413 
= NaNDay3; z = NaNDay7) (Figure 2; Tables S3 and S4). Nevertheless all pathways regulate 414 
osteogenesis as well as govern cellular metabolic reprogramming (28, 39, 82, 85). Furthermore, 415 
the PTEN network was significantly sensitive to Nmp4 status and assigned z scores -2.50Day3 416 
and -1.76Day7 (Figure 2; Tables S3 and S4) suggesting that the activity of this pathway is 417 
attenuated with loss of Nmp4. Indeed, depletion of PTEN signaling was reported to enhance 418 
osteoprogenitor expansion and glycolytic conversion (35, 110).  419 

Of interest, loss of Nmp4 did not significantly alter the expression of Runx2 and Sp7 420 
(Osterix), master regulators of osteogenesis, but elevated expression of the transcription factors 421 
Tcf4, Atf4, and Ddit3 (Chop, Gadd153), which all function downstream of Runx2 and Sp7 422 
(Figure 4). Additionally Nmp4-/- cells exhibited decreased mRNA expression of transcription 423 
factors that drive adipogenesis or chondrogenesis suggesting that loss of Nmp4 facilitates 424 
MSPC differentiation towards osteogenesis and that this predisposition is reinforced by shifts in 425 



transcriptional networks regulating the activities of the aforementioned osteogenic/metabolic 426 
pathways (Figure 2, Figure 4 Tables S3 and S4). 427 
 428 
Phenotype anchoring of our transcriptional data confirmed Nmp4-/- MSPCs exhibited an 429 
enhanced capacity for glycolytic conversion 430 

The glycolytic pathway is predicted to be altered in the Nmp4-/- cells at both Day 3 and 431 
Day 7 in culture (Figure 2; Tables S3 and S4). A heatmap of several genes that comprise the 432 
glycolytic pathway showed that loss of Nmp4 greatly elevated the expression of the glucose 433 
transporter Slc2a1 (a.k.a Glut1) and increased the transcript levels of both Slc2a3 and Slc2a4 434 
(Glut3, Glut4, Figure 5A). The lactate transporter Slc16a3 (a.k.a Mct4) was highly expressed in 435 
the Nmp4-/- MPSCs at both Day 3 and Day 7 in culture (Figure 5A). A primary function of 436 
Slc16a3 is the secretion of lactate and protons from highly glycolytic cells (22) and a recent 437 
study determined that increased levels of Slc16a3 is necessary for sustaining high glycolysis in 438 
macrophages (102). Several genes mediating the conversion of glucose to pyruvate displayed 439 
significantly elevated expression in Nmp4-/- cells (Figure 5A). Genes responsible for regulating 440 
the switch between aerobic glycolysis and oxidative phosphorylation including Hk2, Pkm, Pdk1, 441 
and Ldha showed significantly higher mRNA levels in the Nmp4-/- cells. Additionally, our ChIP-442 
seq analysis in MC3T3-E1 cells showed that Nmp4 binds to both Pdk1 and Pkm genes (Figure 443 
5B) indicating that this trans-acting protein directly targets key genes that regulate the glycolytic 444 
switch.  445 

We linked our transcriptome/ChIP-seq analyses to functional data via the glycolytic 446 
stress tests (Figure 6). WT vs. Nmp4-/- cells derived from the male littermates (1957WT/1957KO) 447 
and the WT vs. Nmp4-/- cells derived from the males obtained from random litters 448 
(1584LWT/1515RRKO) were cultured in non-differentiating medium using the Seahorse analyzer. 449 
Cells were seeded directly into an analyzer well plate and grown for 24hrs in culture. 450 
Subsequently cells were incubated in medium devoid of glucose or pyruvate and the analyzer 451 



measured the extracellular acidification rate (ECAR) before and after a saturating amount of 452 
glucose was injected. These experiments quantified glycolytic activity (glycolysis), which was 453 
significantly elevated in Nmp4-/- cells (Figures 6A-6C). The ECAR value was then obtained after 454 
injection of oligomycin, which inhibited oxidative phosphorylation driving the cell to use 455 
glycolysis to its maximum capacity (glycolytic capacity). Again the Nmp4-/- cells exhibited a 456 
significantly elevated level for this parameter (Figures 6A-6C). The final injection of 2-deoxy-457 
glucose (2-DG), a glucose analog that inhibited glycolysis through competitive binding to 458 
glucose hexokinase, decreased ECAR confirming that the lowered medium pH was the result of 459 
increased glycolysis (Figures 6A and 6B). The glycolytic reserve, defined as the difference 460 
between glycolytic capacity and glycolysis rate was elevated with the loss of Nmp4 (Figures 6A-461 
6C). We conclude that loss of Nmp4 results in the metabolic reprogramming of the MSPCs 462 
enhancing their capacity for glycolysis. 463 
 464 
Nmp4-/- MSPCs exhibited an increased mitochondrial respiratory capacity 465 

Next the mitochondrial respiratory capacity was compared in the WT and Nmp4-/- cells. 466 
For the mitochondrial stress test the Seahorse analyzer was used to measure basal respiration 467 
reported as oxygen consumption rate (OCR) and then the cells were sequentially exposed to 468 
various compounds to assess mitochondrial electron transport chain function (Figures 7A-7C). 469 
Our results showed that loss of Nmp4 elevated basal respiration, maximal respiration, and ATP 470 
production in MSPCs (Figures 7A-7C). Spare respiratory capacity and non-mitochondrial 471 
respiration were also significantly elevated (data not shown). We conclude that metabolic 472 
reprogramming occurs in MSPCs as a consequence of Nmp4 loss, enhancing the capacity of 473 
these cells for oxidative phosphorylation.   474 
 475 
Nmp4-/- osteoprogenitors exhibit enhanced protein production and secretion  476 



 IPA analysis predicted that loss of Nmp4 elevates the activity of several cellular 477 
pathways driving protein production and delivery. Specifically, the activities of the eIF-2 (z = 478 
+3.28Day3

; +2.72Day7), mTOR (z = +2.949Day3
; +2.71Day7), and the eIF4 and p70SK6 (z = +3.16Day3

; 479 
+2.56Day7) signaling pathways were predicted to be upregulated in Nmp4-/- cells (Figure 2, 480 
Tables S3 and S4). This suggests that loss of Nmp4 stimulates anabolic processes including 481 
protein synthesis, translation initiation, and the regulation of energy production in mitochondria 482 
(71, 105). Loss of Nmp4 was projected to alter the tRNA signaling pathway but the direction of 483 
change could not be predicted (z = NaNDay7) (Figure 2; Table S4). Nevertheless, several genes 484 
of this pathway were significantly upregulated (Figures 2B & 8). Indeed the expression of 485 
numerous genes comprising the pathways of amino acid transport, amino acid biosynthesis, 486 
ribosome biogenesis, and translation initiation were significantly elevated (Figure 8). Elevated 487 
protein production in Nmp4-/- MSPCs is also supported by our earlier report that enhanced 488 
ribosome biogenesis was sustained during induction of the unfolded protein response (UPR) 489 
which serves to expand the processing capacity of the ER for nascent secretory proteins (25, 490 
114). This Nmp4-directed transcriptome program may allow a large protein client load to be 491 
processed through the endoplasmic reticulum without halting global osteoblast translation or 492 
inducing apoptosis (114). Indeed, the RNA-seq analysis confirmed that Nmp4-/- MSPCs 493 
exhibited elevated expression of several genes UPR pathway (Figure 9) and IPA/MAP analysis 494 
predicted that protein-folding activity is elevated and UPR-induced apoptosis is attenuated with 495 
loss of Nmp4 (Figure 9).  496 

We validated the transcriptome data experimentally by measuring bone matrix 497 
production and delivery in WT and Nmp4-/- osteoprogenitors by comparing the levels of Col1a1-498 
mRNA associated with polyribosomes and the levels of collagen protein secretion. WT vs. 499 
Nmp4-/- cells derived from the littermates (1957WT/1957KO) and the WT vs. Nmp4-/- cells derived 500 
from mice obtained from random litters (1584LWT/1515RRKO) were cultured in non-differentiating 501 
medium for four days. We observed elevated levels of 40S and 60S ribosomal subunits and 80S 502 



monosomes, and increased polysomes in Nmp4-/- MSPCs compared to WT (Figure 10A). The 503 
RNA-seq data revealed that total Col1a1 mRNA expression was elevated in the Nmp4-/- cells 504 
(Figure 10B). To address whether Col1a1 mRNA translation accompanied the enhanced global 505 
translation, qRT-PCR analysis was performed to quantify the amount the of Col1a1 mRNA 506 
present in the polysome fractions prepared from the WT and Nmp4-/- cells (Figure 10C). Col1a1 507 
mRNA was present in heavy polysomes in both WT and Nmp4-/- MSPCs, suggesting efficient 508 
translation. However, there was a reproducible increase in Col1a1 mRNA in the largest fraction 509 
7 in Nmp4-/- cells, suggesting more robust Col1a1 translation in the Nmp4-depleted cells (Figure 510 
10C). Thus the combination of more Col1a1 mRNA available for translation, along with 511 
increased amounts of ribosomes and more efficient Col1a1 mRNA translation, would culminate 512 
in elevated synthesis of Col1A1 protein in the Nmp4-/- cells.  513 

Collagen deposition is coupled to osteogenic proliferation (78) and Nmp4-/- MSPCs 514 
frequently exhibit a modest but significant increase in proliferative activity compared to WT (16). 515 
To evaluate changes in collagen production induced by Nmp4 deletion, independent of the 516 
confounding effects of proliferation differences, we first measured collagen production in the 517 
1515RRKO and 1584LWT preparations that normally do not exhibit a difference in proliferation.  518 
\1515RRKO cells produced approximately 3-4-fold more collagen/cell than the 1584LWT (Figure 519 
10D). Next we evaluated the amount of collagen recovered/well as a function of the number of 520 
cells/well for all six MSPC preparations (Figure 10E). All three Nmp4-/- preparations produced 521 
more collagen compared to WT cells regardless of cell number during this proliferative period in 522 
culture (Figure 10E). Moreover, preliminary experiments with shRNA knockdown of Nmp4 in 523 
MC3T3-E1 cells yielded a similar Collagen/well vs. Cells/well profile (data not shown). This is 524 
consistent with our previous in vivo data showing that the Nmp4-/- mice harbor more bone 525 
marrow osteoprogenitors than WT, which in turn produce more bone when stimulated (16, 41, 526 
95). We conclude that loss of Nmp4 converts osteoprogenitors/osteoblasts into super-secretors 527 
of bone matrix while moderately enhancing their proliferative activity.  528 



 529 
Nmp4-/- osteoblasts produce a bone matrix with improved material properties 530 

Several genes representing multiple protein classes comprising the bone matrix (6, 14, 531 
17, 51, 69) were identified as upregulated in our RNA-seq dataset suggesting enhanced matrix 532 
material properties in the null animal. The mRNA expression of this collection of genes is 533 
represented by a heatmap that displays changes between the Nmp4-/- and WT 534 
MSPCs/osteogenic cells (Figure 11). Loss of Nmp4 significantly increased or decreased the 535 
expressions and relative ratio of several extracellular matrix (ECM) genes including those that 536 
support bone mechanical properties e.g. Col1a1, Col1a2, Bglap2 (osteocalcin), and Spp1 537 
(osteopontin) (Figure 11). Also the expression of key genes that control mineralization were 538 
altered in the Nmp4-/- cells consistent with the phenotype observed in culture. For example, the 539 
genes phosphoethanolamine/phosphocholine phosphatase (Phospho1) and alkaline 540 
phosphatase, tissue-nonspecific isozyme (Alpl), encoding phosphatases responsible for 541 
initiating mineralization (5, 43, 67, 112, 113), were highly induced in the Nmp4-/- cells as was the 542 
gene Slc20a1 a sodium-phosphate symporter also involved in the initiation of skeletal 543 
mineralization (112) (Figure 11). Finally, the expression of several small leucine-rich 544 
proteoglycans (SLRPs) such as lumican (Lum) and decorin (Dec) were highly elevated in the 545 
Nmp4-/- cells (Figure 13). SLRPs play significant structural roles within the ECM and regulate 546 
collagen fibril growth, organization and ECM assembly (12, 47, 76).   547 

To test the biological ramifications of the transcriptional changes associated with the 548 
bone matrix genes, we evaluated skeletal tissue obtained from healthy virgin mice that had 549 
been treated with the osteoporosis therapeutics RAL, PTH, PTH+RAL and vehicle-control for 7 550 
weeks as described in the Materials and Methods. Ovariectomized mice were not used in this 551 
experiment because ovariectomy does not change the enhanced response to anabolic drugs in 552 
the Nmp4-/- animals (16). Furthermore, all the MSPCs used in this study were derived from 553 
healthy, virgin mice. Briefly, µCT analysis showed that the PTH+RAL therapy produced more 554 



bone compared to both the PTH and RAL mono-therapies at the distal femur and L5 vertebra 555 
(Figures 12A & 12B, Tables 1 and 2). There was a synergistic (greater than additive) interaction 556 
between PTH and RAL in both the WT and Nmp4-/- mice for BV/TV of the distal femur and the 557 
L5 vertebra (Table 2). However, loss of Nmp4 significantly improved the femoral bone gain and 558 
the L5 bone gain in the PTH and PTH+RAL treatments (Figures 12A & 12B Table 1). Nmp4 559 
status had no impact on bone response to RAL mono-therapy (Figures 12A & 12B, Table 1). 560 
Finally, there was no significant difference between the genotypes under the VEH control 561 
treatment with respect to femoral and L5 BV/TV (Figures 12A & 12B, Table 1). However loss of 562 
Nmp4 did significantly impact some aspects of femoral cortical geometry, such as cortical 563 
thickness, marrow area as well as other related parameters (Table 3). Altogether, these results 564 
are similar to the data we reported in older ovariectomized mice (95). 565 

A key component of these functional investigations required the measurement of 566 
material and structural mechanical properties of the bone. Therefore the left femurs from each 567 
animal were monotonically tested to failure. The Nmp4-/- bones exhibited a significantly higher 568 
ultimate stress, which is the stress necessary to fracture the bone at the material-level, 569 
normalized for the bone geometry (Figure 12C, Table 4). Yield stress, the stress applied to the 570 
bone after which there is permanent damage, normalized for geometry, was also significantly 571 
higher in the Nmp4-/- femurs (Figure 12D, Table 4). Additionally, the higher value for the elastic 572 
modulus, a measure of the material’s stiffness, in Nmp4-/- bones approached significance 573 
(genotype p<0.06, Table 4). Interestingly, numerous material properties were sensitive to the 574 
osteoporosis therapies. PTH+RAL led to significantly higher ultimate stress over RAL and PTH 575 
mono-therapies in both genotypes (treatment p<0.0001 Figure 12C and Table 4). PTH 576 
treatment led to a modest but significantly lower yield stress than VEH control and RAL cohorts, 577 
which were equivalent. The lower yield stress in the PTH cohorts is likely due to the increased 578 
amount of new and less mineralized bone. This would make the tissue less stiff, which is 579 
consistent with the modulus trending lowest in the PTH-treated mice (Table 4). 580 



Finally, total strain, elastic modulus, and resilience were all differentially responsive to 581 
the various therapies (treatment p<0.05 Table 4). 582 

Loss of Nmp4 also altered the structural properties of the femur. Yield force was 583 
significantly increased in the null bone (genotype p=0.004 Table 5) and the increase in ultimate 584 
force neared significance (genotype p=0.07). Total displacement, the total amount of 585 
deformation the bone undergoes before failure, was significantly lowered in the Nmp4-/- femurs 586 
(genotype p=0.04 Table 5) and the decrease in post yield displacement, the amount of 587 
deformation that occurs after the yield point, approached significance (p=0.06, Table 5). Finally, 588 
work-to-yield, the energy that goes in to deforming the sample was significantly higher in the 589 
Nmp4-/- bone (genotype p=0.03 Table 5). These results show that the Nmp4-/- osteoblast 590 
produces more matrix than WT cells and that the composition of the secretome results in 591 
improved bone material and structural properties. 592 
 593 
DISCUSSION: 594 
 595 

We investigated the mechanisms underlying the hyper-anabolic phenotype of Nmp4-/- 596 
MSPCs during osteogenesis. Transcriptomic data predicted that Nmp4-/- osteogenic cells have 597 
(i) a significantly increased capacity for metabolic conversion to glycolysis, (ii) increased Col1a1 598 
mRNA translation, (iii) elevated collagen secretion, and (iv) elaborate a matrix that improves 599 
bone material and structural mechanical properties. In each case, we were able to anchor the 600 
predicted phenotype with experimental results. Moreover the derived mechanistic insights on 601 
Nmp4 control of bone cell phenotype were remarkably consistent between the multiple model 602 
systems used in this investigation including MSPCs, MC3T3-E1 osteoblast-like cells, and the in 603 
vivo bone studies. Nevertheless, additional model systems are required to explore Nmp4 control 604 
of bone phenotype, e.g. conditional knockout mice and CRISPR cell lines, and we are currently 605 
developing these reagents. 606 



The Nmp4-/- MSPCs have a significantly increased capacity for metabolic conversion to 607 
glycolysis, which is a key driver of osteoblast anabolism. Our ChIP-seq and RNA-seq data show 608 
that Nmp4 directly targets and regulates key genes that direct the cell towards aerobic 609 
glycolysis including Pdk1 and Pkm. Glucose is a key nutrient for osteoblasts and aerobic 610 
glycolysis is the dominant mode of glucose utilization in these cells (49, 53). Thus, while it is a 611 
less efficient source of energy, glycolysis can generate both anabolic growth intermediates and 612 
ATP very rapidly owing to the much higher speed of glycolysis reactions (97). In vivo, PTH-613 
induced bone anabolism is driven in part by the hormone mobilizing osteoblast autocrine IGF1 614 
signaling. This activates mTORC2, which suppresses glucose entry into the TCA cycle and 615 
shunts it into the aerobic glycolysis pathway (28). Concomitantly, PTH downregulates 616 
Sost/sclerostin expression in osteocytes, unleashing the anabolic WNT signaling pathway (98), 617 
driving osteogenesis in part by further stimulating glycolysis via the rapid increase in GLUT1 618 
and HK2 protein expression and escalation in LDHA and PDK1 activities thus increasing 619 
glucose consumption and driving lactate over acetyl-CoA production from pyruvate (27).  620 

Our transcriptome data identify the HIF1α and PTEN canonical pathways as significantly 621 
sensitive to the status of Nmp4, which is consistent with the glycolytic phenotype of the null cells. 622 
Like the IGF1 and WNT pathways the HIF1α and PTEN link osteogenesis and metabolic 623 
reprogramming. Stabilization of the transcription factor HIF1α in Sp7-positive cells in postnatal 624 
mice significantly stimulated trabecular bone formation via an increase in the number of 625 
osteoblasts and also promoted bone glycolysis via the mRNA upregulation of key glycolytic 626 
enzymes including Pdk1, Ldha, and Hk2 (85). Mice expressing the stable-oxygen form of HIF1α 627 
in osteoprogenitors exhibited an expanded pool of these cells and elevated trabecular BV/TV, 628 
very reminiscent of the Nmp4-/- skeletal response to PTH (16, 41, 95). Our pathway analysis 629 
predicted that PTEN signaling is attenuated in the Nmp4-/- cells. Interestingly, PTEN signaling 630 
antagonizes the Pi3k-Akt-mTORC2-p70s6k pathway and thus decreases the glycolytic rate and 631 
favors oxidative phosphorylation (77). Specifically, PTEN decreases the levels of two key 632 



enzymes involved in the Warburg effect, PKM2 and PFKFB3 (33). Therefore, conditional loss of 633 
Pten in osteoprogenitors led to increased numbers of osteoblasts and expanded bone matrix 634 
(35), whereas conditionally disabling Pten in mature osteoblasts enhanced mTOR activity and 635 
increased bone mineral density (60). Again, this Pten-deficient bone phenotype is similar to the 636 
Nmp4-/- skeleton under PTH challenge.  637 

The Nmp4-/- MSPCs also exhibited an enhanced capacity for oxidative phosphorylation. 638 
This is consistent with a recent study showing that non-differentiated MC3T3-E1 osteoblast-like 639 
cells exhibited both spare glycolytic and oxidative capacities (34). Additionally, this study 640 
reported that differentiated MC3T3-E1 cells met ATP demand primarily by aerobic glycolysis, 641 
whereas non-differentiated cells generated ATP through oxidative phosphorylation (34). Further 642 
studies with our MSPCs are required to elucidate the impact of Nmp4 on metabolic 643 
reprogramming during differentiation. 644 

The present study revealed that Nmp4-/- MSPCs exhibited increased Col1a1 mRNA 645 
translation attendant with elevated collagen secretion revealing part of the mechanism by which 646 
these cells are converted into super-secretors. Collagen comprises over 90% of the bone 647 
protein matrix and our results suggest that a large percent of Col1a1 mRNA transcripts are 648 
present in the heavy polysomes in Nmp4-/- MSPCs implying a high translation of Col1a1 649 
transcript. This is consistent with our observed increase in collagen protein secretion in these 650 
cells. Osteoprogenitor loss of Nmp4 not only redirects metabolic programming toward cellular 651 
anabolism, but also elevates gene expression for multiple pathways involved in protein 652 
synthesis and delivery, a key step in bone formation (27, 48). Our transcriptomic analysis 653 
showed a striking increase in the mRNA expression of several genes that promote protein 654 
anabolism during osteoblast differentiation including numerous amino acid transporters, the 655 
amino acid synthase Asns and several other genes involved in amino acid synthesis, many 656 
tRNA-charging enzymes, and multiple genes driving protein translation initiation as part of the 657 
eif4 and eif2 pathways. The present data are consistent with our previous study showing that 658 



Nmp4-/- MSPCs exhibited significantly elevated ribosome biogenesis, the primary determinant of 659 
translational capacity and a key driver of cell growth (114). 660 

Another key finding of the present work is that Nmp4-/- osteoblasts elaborate a matrix 661 
that improves bone material and structural mechanical properties. The expression of matrix 662 
genes that contribute to material and structural mechanical properties, e.g. collagen, osteocalcin, 663 
and SLRPs were elevated in Nmp4-/- cells and mechanical analysis of femurs from mice treated 664 
with osteoporosis therapies confirmed enhanced improvement in several of these key properties 665 
in the Nmp4-/- bone. Enhanced and accelerated mineralization in vitro often does not correlate 666 
with positive effects on the skeleton. For example, osteoblasts deficient in the expression of 667 
Naca (66), Sox8 (93), or Foxc1 (42) showed an ex vivo accelerated mineralization phenotype; 668 
however animals harboring deficits in any one of these genes exhibited significant defects in 669 
bone development, formation, or mineralization (42, 66, 93). Sodium fluoride (NaF) is an 670 
osteoanabolic that increases bone mass but the newly formed bone lacks normal structure and 671 
strength (10, 86, 99). Mechanical load is a bone anabolic signal and the magnitude of the 672 
applied strain determines whether the response is adaptive, forming primarily lamellar bone, or 673 
injury, producing woven bone (65). Although woven bone forms faster than lamellar bone, it has 674 
inferior mechanical and material properties (8, 19). These findings are in stark contrast to our 675 
present model in which the precocious and enhanced mineralization of the Nmp4-/- osteoblast 676 
directly translates into an improved skeletal response to osteoanabolics (15, 16, 41, 95).  677 

The molecular mechanisms underlying the improved Nmp4-/- bone quality remains to be 678 
determined but the enhanced expression of osteocalcin by pharmacologically induced Nmp4-/- 679 
osteogenic cells (15, 16, 95) may improve the quality of the produced bone. Earlier we proposed 680 
that non-collagenous proteins act as “glue” at the collagen-mineral interface to resist the 681 
separation of the mineralized fibrils and therefore enhance bone toughness (69, 75, 84, 100). 682 
Anabolic therapies that induce the formation of osteocalcin/osteopontin-enriched bone may 683 
further enhance energy absorption capacity of bone tissue. Therefore loss of Nmp4 may 684 



modestly alter the ratio of collagen to non-collagenous protein matrix composition, which would 685 
be enough to improve bone quality. Additionally, the present data suggest that Nmp4-/- matrix is 686 
enriched in SLRPs, which govern ECM assembly via regulation of linear/lateral fibril growth by 687 
binding to the collagen fibril surface (12, 47, 76). Thus the collagen maturation may be 688 
accelerated in Nmp4-/- bone.   689 

The present data demonstrate that Nmp4 acts cell autonomously as a barrier to bone 690 
matrix production and mineralization. As an apex regulator of bone cell anabolic output Nmp4 691 
directly and indirectly regulates gene programs that control key stages of matrix production and 692 
secretion and the metabolic reprogramming necessary to fuel it (Figure 13). The Nmp4 693 
transcriptional modus operandi is reminiscent of another apex regulator c-Myc, which like Nmp4 694 
controls the expression of large sets of genes involved in ribosome biogenesis, metabolism, and 695 
protein synthesis, representing a cell-type-independent genetic program involved in biomass 696 
accumulation (38, 45). Furthermore, whereas c-Myc acts a general amplifier of gene expression 697 
(50, 73, 108), Nmp4 appears to act as a general attenuator and suppressor of biomass accrual 698 
(16, 114). Both the MSPC RNA-seq and Nmp4 MC3T3-E1 ChIP-seq pathway analyses (16) are 699 
consistent with this mechanistic profile. Like c-Myc, Nmp4 may directly govern the expression of 700 
master transcriptional regulators of these key networks in addition to broadly engaging some of 701 
their downstream target genes. Whether there is a functional relationship between c-Myc and 702 
Nmp4 remains to be determined. Nmp4 control of protein translation and movement through the 703 
bone cell ER is particularly intriguing since this is a potential promising area for drug target 704 
discovery. Several therapeutic strategies and multiple drugs are currently being developed to 705 
enhance the adaptive capability of the ER in the service of secretion for numerous diseases 706 
including diabetes, cancer, Alzheimer’s, and osteoporosis (24, 36, 40, 54, 87, 91, 104). Nmp4 707 
control of metabolic reprogramming may also present therapeutic targets for regulating bone 708 
anabolism (48, 49, 106).  709 



There is a critical medical need for understanding the intrinsic barriers to 710 
pharmacologically inducing bone formation in the osteoporotic skeleton (21). Interrogating these 711 
pathways may alleviate the current limits to osteoanabolic therapy.  712 
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FIGURES AND FIGURE LEGENDS: 722 
Figure 1: Loss of Nmp4 accelerates and enhances MSPC mineralization and has a broad 723 
impact on the transcriptome. [A] Six independently expanded MSPC preparations from 724 
individual WT and Nmp4-/- mice were established as described in Materials and Methods. 725 
Cultures were stained with alizarin red when mineralization was first observed. The cells derived 726 
from the Nmp4-/- mice consistently exhibited mineral days to weeks before this was observed in 727 
the WT cultures. The cell preparations 1957NKO and 1957RWT were derived from male 728 
littermates. The remaining lines were derived from male or female mice selected from random 729 
litters. [B] Volcano plots of RNA-seq data from MSPCs maintained in non-differentiating culture 730 
medium for 3 days and osteogenic differentiating culture medium for 7 days. The X-axis 731 
represents the logarithmic transformation to the base 2 of the mean fold-change of mRNA 732 
expression in Nmp4-/- cells versus control cells and the Y-axis represents the negative logarithm 733 
to the base 10 of the FDR value. Changes in gene expression were considered significant if the 734 
fold-change of KO/WT ≥+2 (red circles) and FDR ≤0.05 or KO/WT≤ -2 (green circles) and FDR 735 
≤0.05. The black circles represent genes that did not meet either criteria. The dotted line 736 
demarcates FDR=0.05. [C] Venn diagrams showing gene overlap between ChIP-seq and RNA-737 
seq data. The former was derived from MC3T3-E1 cells (16). Genes that supported Nmp4 738 
occupancy were required to exhibit peaks (height ≥ 10) within-5 to+2 kb from a transcription 739 
start site (TSS) and/or located within the range defined by the TSS and the transcription end site. 740 
 741 
Figure 2: Ingenuity Pathway Analysis of the RNA-seq data identified over 200 pathways 742 
significantly altered in the Nmp4-/- cells maintained in differentiation culture medium for 7 days 743 
(see Table S4). Here we show select canonical pathways that are sensitive to Nmp4 status and 744 
relevant to the metabolic reprogramming, protein synthesis and secretion of the bone cells. [A] 745 
The bar graphs are color-coded to reflect the z-score calculated by the IPA algorithm, which 746 
predicts the direction of change for the pathway upon loss of Nmp4. An absolute z-score of  2 or 747 



more is considered significant. The activation state of the pathway is predicted to be increased if 748 
the z-score is ≥ 2 and these bars are color coded with an orange hue. Conversely, bar graphs 749 
with a blue hue indicate a z-score  ≤ −2 representing canonical pathways with a decreased 750 
activity. Those pathways represented with a grey bar (z = NaN) indicate that the z-score 751 
algorithm cannot predict whether the pathway activity is increased or decreased in the Nmp4-/- 752 
cells. The orange, line gives the ratio of the number of genes listed in the Nmp4 dataset over 753 
the total number of genes in the IPA annotated pathway. [B] The bar graphs are color coded to 754 
reflect the percentage of genes in a particular pathway whose expressions are significantly 755 
upregulated with the loss of Nmp4 (red) and those genes whose expressions are attenuated in 756 
the null cells (green). The total numbers of genes comprising the canonical pathways are also 757 
indicated. The orange line gives the –log10(p-value) and significance was defined by p 758 
value≤0.05 [or 1.30= -log10(p-value)]. 759 
 760 
Figure 3: The IPA Molecule Activity Predictor (MAP) algorithm indicated that loss of Nmp4 761 
elevates Wnt/β-catenin activity, a major driver of bone anabolism and suppressor of 762 
adipogenesis. Molecules in pink-red are found in the dataset and are upregulated. Molecules 763 
that are green are found in the dataset and are downregulated. Molecules that are grey are 764 
found in the dataset but did not pass any of the filter parameters originally established for the 765 
analysis. White molecules are not in the dataset but part of the pathway. Orange molecules and 766 
arrows predict activation whereas blue molecules and arrows predict inhibition. On the left-hand 767 
side of this pathway is a heatmap of genes comprising the Wnt/β-catenin pathway derived from 768 
the RNA-seq data of WT and Nmp4-/- MPSCs at Day 3 (uncommitted) and Day 7 (early 769 
osteogenesis) in culture. Red boxes indicate increased expression in the Nmp4-/- cells 770 
compared to the WT, with greater color saturation indicating higher expression, and green 771 
indicate reduced expression. The star  indicates Nmp4 binds proximal to the transcription start 772 



site or within the intron of the gene as determined by ChIP-seq analysis (Childress et al., 2015). 773 
Abbreviations for the IPA/MAP: Adenomatous polyposis coli protein (APC); B-cell lymphoma 9 774 
(BCL9); the histone acetyl transferase (CBP); Casein kinase I (CKI); Dickkopf (Dkk); disheveled 775 
(Dsh); Glycogen synthase kinase 3β (GSK3β); and GSK3 binding protein (GBP); mitogen-776 
activated protein kinase kinase kinase kinase 1 (Hpk1 a.k.a. Map4k1); NEMO-like kinase (NLK); 777 
retinoic acid receptor (RAR); nuclear receptor subfamily 2, group C, member 2 (Tak1 a.k.a. 778 
Nr2c2); T cell activation factor (TCF). 779 
 780 
Figure 4: Loss of Nmp4 biases the MSPC transcriptome toward the osteogenic lineage. 781 
Heatmap of RNA-seq data from WT and Nmp4-/- MPSCs at Day 3 (uncommitted) and Day 7 782 
(early osteogenesis) in culture. Red boxes indicate increased expression in the Nmp4-/-cells 783 
compared to the WT, with greater color saturation indicating higher expression, and green 784 
indicate reduced expression. The star  indicates Nmp4 binds proximal to the transcription start 785 
site or within the intron of the gene as determined by ChIP-seq analysis (16). Also shown, IPA 786 
canonical pathways and z scores that support osteogenesis. Orange ovals indicate pathways 787 
that are predicted to be activated and whereas blue ovals predict that the pathways are inhibited. 788 
 789 
Figure 5: Loss of Nmp4 perturbs the MSPC glycolytic pathway. [A] Nmp4-/- 790 
osteoprogenitors/osteoblasts exhibit significant elevated expression of several genes that drive 791 
glycolysis. Schematic of glycolysis/oxidative phosphorylation [OXPHOS] pathways with overlay 792 
of heatmap derived from RNA-seq data generated from WT and Nmp4-/- MPSCs harvested at 793 
Day 3 (uncommitted cells) and Day 7 (early osteogenesis). Red boxes indicate increased 794 
expression in the Nmp4-/- cells compared to the WT cells, with greater color saturation indicating 795 
higher expression, and green color indicates reduced expression. The star  indicates Nmp4 796 
binds proximal to the transcription start site or within the intron of the gene as determined by 797 
ChIP-seq analysis (16). [B] ChIP-seq reveals Nmp4 binding profiles at specific gene loci in 798 



mouse MC3T3-E1 cells (Childress et al., 2015, GEO accession number GSE112693 for 799 
complete ChIP-Seq dataset). The Burrows-Wheeler algorithm was used to align sequences (50-800 
nt reads, single end) to the mouse genome (mm10). Alignments were extended in silico at their 801 
3’-ends to a length of 150bp, which is the average genomic fragment length in the size-selected 802 
library, and assigned to 32-nt bins along the genome. The MACS algorithm (v1.4.2) with a cutoff 803 
of P = 1e-7 was used to determine Nmp4 (Znf384) peak locations. The genomic loci including 804 
the chromosome number and nucleotide interval are indicated. The y-axis indicates the read 805 
scales. Arrows indicate the transcriptional start sites and direction of transcription; vertical boxes 806 
within the gene indicate exons. The Nmp4 ChIP-seq gene profiles include Pdk1 Pkm. The input 807 
DNA profiles were devoid of peaks. 808 
 809 
Figure 6: Loss of Nmp4 enhances glycolytic capacity. The line graphs show a comparison of 810 
WT vs. Nmp4-/- MSPC extracellular acidification rate (ECAR) profiles that have undergone the 811 
Glycolytic Stress test. [A] The MSPCs 1957RWT and 1957NKO were derived from male 812 
littermates. [B] The MSPCs 1584LWT and 1515RRKO were derived from a random pair of male 813 
WT and Nmp4-/- mice. These graphs are representative of 4 individual tissue culture 814 
experiments (biological replicates). [C] These graphs represent data from 5 separate 815 
experiments with cells from 5 different platings. In each experiment, 10 technical replicates with 816 
each cell preparation have been performed. The data are mean ± SD. Statistical significance 817 
was set at p<0.05. Glycolysis is the increase in ECAR measured after the glucose injection. 818 
This is the rate of glycolysis under basal conditions. Glycolytic capacity is the increase in ECAR 819 
after oligomycin injection. Glycolytic reserve is determined after 2-deoxy-glucose (2-DG) 820 
injection, which inhibits glycolysis. The difference between Glycolytic Capacity and Glycolysis 821 
rates defines Glycolytic Reserve.  822 
 823 



Figure 7: Loss of Nmp4 enhances mitochondrial respiratory capacity. The line graphs show a 824 
comparison of WT vs. Nmp4-/- MSPC oxygen consumption rate (OCR) profiles that have 825 
undergone the Mitochondrial Stress test. [A] The MSPCs 1957RWT and 1957NKO were derived 826 
from male littermates. [B] The MSPCs 1584LWT and 1515RRKO were derived from a random pair 827 
of male WT and Nmp4-/- mice. These graphs are representative of 5 individual tissue culture 828 
experiments (biological replicates). [C] These graphs represent data from 5 separate 829 
experiments with cells from 5 different platings. In each experiment, 10 technical replicates with 830 
each cell preparation have been performed. The data are mean ± SD. Statistical significance 831 
was set at p<0.05. Basal respiration (BASAL RESP) was first measured and then the cells were 832 
sequentially exposed to various inhibitors of the mitochondrial electron transport chain. ATP 833 
production (ATP PROD) was based on the comparison between the basal OCR and the 834 
oligomycin-induced drop in OCR. The subsequent injection of carbonyl cyanide-4 835 
(trifluoromethoxy) phenylhydrazone (FCCP) uncoupled the electron transport chain increasing 836 
OCR and permitting the calculation of the maximal respiration rate (MAX RESP). Non-837 
mitochondrial respiration was determined from the final injection of rotenone, a complex I 838 
inhibitor, and antimycin A, a complex III inhibitor. This parameter was significantly higher in the 839 
Nmp4-/- cells (data not shown). Spare respiratory capacity was also significantly elevated (data 840 
not shown). 841 
 842 
Figure 8: Genes involved in various aspects of protein synthesis are shown in the heatmaps 843 
positioned along this cellular process. These heatmaps were derived from RNA-seq data 844 
generated from WT and Nmp4-/- MPSCs harvested at Day 3 (uncommitted cells) and Day 7 845 
(early osteogenesis). Red boxes indicate increased expression in the Nmp4-/- cells compared to 846 
the WT cells, with greater color saturation indicating higher expression, and green color 847 
indicates reduced expression. The star  indicates Nmp4 binds proximal to the transcription 848 
start site or within the intron of the gene as determined by ChIP-seq analysis (16).  849 



 850 
Figure 9: The IPA Molecule Activity Predictor (MAP) algorithm indicated that loss of Nmp4 851 
elevates protein folding and attenuates endoplasmic reticulum stress-induced apoptosis. 852 
Molecules in pink-red are found in the dataset and are upregulated. Molecules that are green 853 
are found in the dataset and are downregulated. Molecules that are grey are found in the 854 
dataset but did not pass any of the filter parameters originally established for the analysis. White 855 
molecules are not in the dataset but part of the pathway. On the right-hand side of this pathway 856 
is a heatmap of genes comprising the unfolded protein response pathway (UPR) derived from 857 
the RNA-seq data of WT and Nmp4-/- MPSCs at Day 3 (uncommitted) and Day 7 (early 858 
osteogenesis) in culture. Red boxes indicate increased expression in the Nmp4-/- cells 859 
compared to the WT, with greater color saturation indicating higher expression, and green 860 
indicate reduced expression. The star  indicates Nmp4 binds proximal to the transcription start 861 
site or within the intron of the gene as determined by ChIP-seq analysis. Abbreviations for the 862 
IPA/MAP: Autocrine motility factor receptor (AMFR); ER-degradation-enhancing-α-mannidose-863 
like protein (EDEM); ER-associated protein degradation (ERAD); Membrane bound transcription 864 
factor peptidase (MBTPS); protein disulfide isomerase (PDI); SREBF chaperone (SCAP); 865 
Valosin-containing protein (VCP). 866 
 867 
Figure: Loss of Nmp4 enhances collagen expression and secretion. Data were derived from 868 
MSPC preparations 1584LWT, 1515RRKO, 1957RWT, 1957NKO [A] Polysome profiles of lysates 869 
prepared from WT and Nmp4-/- MSPCs at 4 days in culture. Representative profiles from 3 870 
biological replicates [B] Col1a1 mRNA expression as determine by RNA-seq in MSPCs 871 
maintained in non-differentiation medium for 3 days in culture and 7 days in culture (5 days in 872 
osteogenic medium). [C] Following polysome profiling, fractions 1-7 were collected, and the 873 
percentage of Col1a1 mRNA present in each sucrose gradient fraction were quantified by qRT-874 
PCR and presented as a histogram. Data is representative of 2 biological replicates and 3 875 



technical replicates each. Statistical analyses were performed using 1W ANOVA tests and 876 
asterisks*** was equivalent to p<0.0001. [D] Secretion of collagen protein was measured in the 877 
acid-soluble cell-matrix layer of 1584LWT and 1515RRKO by using the Sircol Assay as described 878 
in Materials and Methods. Loss of Nmp4 significantly enhanced the amount of collagen protein 879 
secreted/cell, * p<0.0001. Data represents 3 biological replicates and 5-6 technical replicates 880 
each. [E] Secretion of collagen protein was measured in the acid-soluble cell-matrix layer by 881 
using the Sircol Assay at Day 4 post-seeding from all MSPC preparations 1584LWT, 1957RWT, 882 
2001RLWT, 1515RRKO, 1957NKO, and 1986RKO and presented as Collagen/well [µg] vs. cell 883 
number/well. All six preparations were tested independently at least twice (Experiments 1 & 2) 884 
and experiments comprised 4-6 wells/preparation. All Nmp4-/- [KO] preparations produced more 885 
collagen during the first four days of culture, regardless of cell number. Data represents average 886 
± SD, n=4-6 wells/group. 887 
 888 
Figure 11: Nmp4-/- osteoprogenitors/osteoblasts exhibit significant elevated expression of 889 
several genes that encode proteins of the bone matrix. The schematic shows family of proteins 890 
that comprise the bone matrix. Also the expressions of key genes that control mineralization 891 
were altered in the Nmp4-/- cells consistent with the observed phenotype observed in culture. 892 
The manually annotated heatmap was derived from RNA-seq data generated from WT and 893 
Nmp4-/- MPSCs harvested at Day 3 (uncommitted cells) and Day 7 (early osteogenesis). Red 894 
boxes indicate increased expression in the Nmp4-/- cells compared to the WT cells, with greater 895 
color saturation indicating higher expression, and green color indicates reduced expression. The 896 
star  indicates Nmp4 binds proximal to the transcription start site or within the intron of the 897 
gene as determined by ChIP-seq analysis (16). 898 
 899 
Figure 12: Loss of Nmp4 improves enhances therapeutically induced bone formation and 900 
femoral material properties. [A] Femoral and [B] L5 vetebral BV/TV for all the experimental 901 



cohorts (age 17wks) comparing WT and Nmp4-/- mice. We compared the therapies RAL, PTH, 902 
and PTH+RAL to each other and to VEH. Statistical analyses were performed using 2W 903 
ANOVA tests setting genotype and treatment as the independent variables. Statistical 904 
significance was set at p≤0.05. There were a strong genotype effect and loss of Nmp4 905 
enhanced femoral and L5 vertebral BV/TV over the cohorts. There was a strong treatment effect 906 
and PTH+RAL was the most efficacious osteoanabolic therapy for both femoral and L5 vertebral 907 
BV/TV. The analysis revealed a genotype x treatment interaction (G x T denoted by an asterisk 908 
in the dot plot showing improved response in the PTH mono-therapy and PTH+RAL 909 
combination therapy with loss of Nmp4. Results of 3pt-bending analysis for [C] Ultimate stress 910 
[D] Yield stress. There were strong genotype and treatment effects for both ultimate stress and 911 
yield stress. Data represents average ± SD, n=8-15 mice/group. 912 
 913 
Figure 13: Hypothesis—Nmp4 is an apex regulator of bone cell anabolic output. This 914 
transcription factor directly and indirectly regulates gene programs that control key stages of 915 
matrix production and delivery. It may accomplish this by regulating both the expression of 916 
master transcriptional regulators of these pathways in addition to broadly engaging several of 917 
their downstream target genes.  918 
 919 



TABLES 920 
TABLE 1: FEMORAL AND L5 TRABECULAR ARCHITECTURE 921 

GROUP Femur BV/TV [%] Femur Tb N (mm-1) Femur Tb Th (mm) Femur Tb Sp (mm)
WT VEH 4.57±0.83 0.970±0.163 0.047±0.003 0.282±0.013

Nmp4-/- VEH 6.53±0.93 1.346±0.0.163 0.048±0.002 0.250±0.008
WT RAL 11.13±1.03 1.885±0.146 0.060±0.001 0.245±0.010

Nmp4-/- RAL 13.38±1.37 2.203±0.161 0.061±0.002 0.227±0.011
WT PTH 13.60±3.39 2.265±0.382 0.059±0.005 0.230±0.020

Nmp4-/- PTH 25.30±6.86 3.304±0.592 0.076±0.008 0.190±0.016
WT PTH+RAL 26.37±2.04 3.591±0.355 0.077±0.005 0.194±0.012

Nmp4-/- 
PTH+RAL 

47.82±15.70 5.125±1.316 0.092±0.008 0.139±0.028

2W ANOVA 
GENOTYPE 

G: p<0.0001 
Nmp4-/-:  A  23.26 
WT:   B  13.92 

G: p<0.0001 
Nmp4-/-:  A  2.99 
WT:   B  2.18

G: p<0.0001 
Nmp4-/-:  A  0.069 
WT:   B  0.061

G: p<0.0001 
WT:   A  0.238 
Nmp4-/-:  B  0.201

2W ANOVA 
TREATMENT 

T: p<0.0001 
P+R: A  37.10 
P:  B  19.45 
R:  C  12.25 
V:  D  5.55 

T: p<0.0001 
P+R: A  4.36 
P:  B  2.78 
R:  C  2.04 
V:  D  1.16 

T: p<0.0001 
P+R: A  0.084 
P:  B  0.067 
R:  C  0.062 
V:  D  0.047 

T: p<0.0001 
V:  A  0.266 
R:  B  0.236 
P:  C  0.210 
P+R: D  0.167 

2W ANOVA 
G x T 

G x T: p<0.0001 
Nmp4-/- P+R: A  47.82 
WT P+R:   B  26.37 
Nmp4-/- P:   B  25.30 
WT P:    CD 13.60 
Nmp4-/- R:  C  13.38 
WT R:    CD 11.13 
Nmp4-/- R:  CD 6.53 
WT V:    D  4.57 

G x T: p=0.0015 
Nmp4-/- P+R: A  5.13 
WT P+R:   B  3.59 
Nmp4-/- P:   B  3.30 
WT P:    C  2.27 
Nmp4-/- R:  C  2.20 
WT R:    CD 1.88 
Nmp4-/- V:   DE 1.35 
WT V:    E  0.97 

G x T: p<0.0001 
Nmp4-/- P+R: A  0.092 
WT P+R:   B  0.077 
Nmp4-/- P:   B  0.076 
Nmp4-/- R:  C  0.061 
WT R:    C  0.060 
WT P:    C  0.059 
Nmp4-/- V:   D  0.048 
WT V:    D  0.047 

G x T: p=0.0022 
WT V:    A  0.282 
Nmp4-/- V:   B  0.250 
WT R:    BC 0.245 
WT P:    BC 0.230 
Nmp4-/- R:  C  0.227 
WT P+R:   D  0.194 
Nmp4-/- P:   D  0.190 
Nmp4-/- P+R: E  0.139 

 922 
GROUP L5 BV/TV [%] L5 Tb N (mm-1) L5 Tb Th (mm) L5 Tb Sp (mm)
WT VEH 24.65±2.05 4.37±0.27 0.056±0.002 0.210±0.017

Nmp4-/- VEH 26.56±2.11 4.37±0.22 0.061±0.003 0.204±0.014
WT RAL 28.62±4.10 5.11±0.71 0.056±0.003 0.201±0.027

Nmp4-/- RAL 31.20±2.83 5.24±0.39 0.059±0.003 0.185±0.008
WT PTH 36.26±2.87 6.60±0.30 0.057±0.003 0.161±0.036

Nmp4-/- PTH 40.62±2.23 6.44±0.18 0.062±0.003 0.153±0.016
WT PTH+RAL 48.28±2.72 8.12±0.24 0.061±0.005 0.129±0.003

Nmp4-/- 
PTH+RAL 

55.76±3.02 8.07±0.47 0.071±0.004 0.120±0.013

2W ANOVA 
GENOTYPE 

G: p<0.0001 
Nmp4-/-:  A  38.54 
WT:   B  34.22 

G: p=0.8545 
Nmp4-/-=WT 

G: p<0.0001 
Nmp4-/-:  A  0.063 
WT:   B  0.057

G: p=0.0324 
WT:   A  0.175 
Nmp4-/-:  B  0.166

2W ANOVA 
TREATMENT 

T: p<0.0001 
P+R: A  52.02 
P:  B  38.44 
R:  C  29.91 
V:  D  25.61 

T: p<0.0001 
P+R: A  8.10 
P:  B  6.52 
R:  C  5.17 
V:  D  4.37 

T: p<0.0001 
P+R: A  0.066 
P:  B  0.059 
R:  B  0.059 
V:  B  0.0578 

T: p<0.0001 
V:   A  0.207 
R:   A  0.193 
P:   B  0.157 
P+R:  C  0.124 

2W ANOVA 
G x T 

G x T: p=0.0133 
Nmp4-/- P+R: A  55.76 
WT P+R:   B  48.28 
Nmp4-/- P:   C  40.63 
WT P:    D  36.26 
Nmp4-/- R:  E  31.20 
WT R:    EF 28.62 
Nmp4-/- V:   F  26.56 
WT V:    F  24.65 

G x T: p=0.6648 
 

G x T: p=0.0154 
Nmp4-/- P+R: A   0.071 
Nmp4-/- P:   B   0.062 
Nmp4-/- V:   BC  0.061 
WT P+R:   BC  0.061 
Nmp4-/- R:  BC  0.059 
WT P:    C   0.057 
WT V:    C   0.056 
WT R:    C   0.056 

G xT: p=0.8336 
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TABLE 1: Femoral and L5 trabecular architecture from WT and Nmp4-/- mice treated with vehicle (V), raloxifene (R), parathyroid hormone (P), and 923 
parathyroid hormone + raloxifene (P+R). Statistical analyses were performed using 2W ANOVA tests setting genotype (G) and treatment (T) as the 924 
independent variables. Statistical significance was set at p≤0.05. The statistical results list the cohorts by genotype, treatment, and genotype x 925 
treatment. Cohorts not connected by the same letter are statistically different. The average value of the specific parameter follows the letter. The 926 
data represents average ± SD, n=8-15 mice/group. See text for explanation of results. 927 
  928 
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TABLE 2: PTH and RAL Synergy 929 
THERAPY p-value PTH 

Treatment 
p-value RAL 
Treatment

p-value PTH x RAL 
interaction

FEMUR BV/TV    
PTH+RAL [WT] p<0.0001 p<0.0001 p<0.0001 
PTH+RAL [Nmp4-/-] p<0.0001 p<0.0001 0.001 
L5 BV/TV    
PTH+RAL [WT] p<0.0001 p<0.0001 0.0008 
PTH+RAL [Nmp4-/-] p<0.0001 p<0.0001 p<0.0001 
CORTICAL AREA    
PTH+RAL [WT] <0.0001 0.0591 0.8056 
PTH+RAL [Nmp4-/-]  <0.0001 0.0166 0.5938 
 930 
TABLE 2: Identification of synergy between PTH and the anti-catabolic SERM RAL using a series of 2 way ANOVA tests comparing the efficacy of 931 
the PTH mono-therapy, RAL mono-therapy and the combination of the two drugs. Statistical significance was set at p≤0.05 932 
 933 
 934 
  935 
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TABLE 3: FEMORAL CORTICAL PARAMETERS 936 
GROUP Marrow Area (mm2) Cortical Area (mm2) Cortical Thickness (mm) Periosteal BS (mm) Endocortical BS (mm) 
WT VEH 0.940±0.049 0.829±0.052 0.204±0.008 5.393±0.139 4.140±0.114 

Nmp4-/- VEH 0.913±0.049 0.838±0.039 0.209±0.009 5.353±0.090 4.078±0.106 
WT RAL 0.860±0.022 0.867±0.037 0.216±0.006 5.344±0.090 4.019±0.095 

Nmp4-/- RAL 0.879±0.039 0.865±0.047 0.218±0.010 5.332±0.111 4.004±0.103 
WT PTH 0.969±0.048 0.949±0.078 0.221±0.005 5.617±0.196 4.213±0.108 

Nmp4-/- PTH 0.931±0.064 0.951±0.062 0.226±0.007 5.564±0.087 4.142±0.116 
WT PTH+RAL 0.892±0.043 0.995±0.070 0.239±0.007 5.552±0.152 4.084±0.106 

Nmp4-/- 
PTH+RAL 

0.852±0.029 1.00±0.067 0.249±0.013 5.478±0.081 3.978±0.038 

2W ANOVA 
GENOTYPE 

G: p=0.0295 
WT    A  0.915 
Nmp4-/-:  B  0.894 

G: p=0.3420 G: p=0.008 
Nmp4-/-:  A  0.225 
WT:   B  0.220 
 

G: p=0.0780 G: p=0.0034 
WT    A  4.11 
Nmp4-/-:  B  4.05 

2W ANOVA 
TREATMENT 

T: p<0.0001 
P   A  0.950 
V:  A  0.927 
P+R: B  0.872 
R:  B  0.869 

T: p<0.0001 
P+R  A  0.990 
P:   A  0.954 
R:   B  0.866 
V:   B  0.833 

T: p<0.0001 
P+R:  A  0.244 
P:   B  0.223 
R:   B  0.217 
V:   C  0.206 

T: p<0.0001 
P:   A  5.59 
P+R:  A  5.52 
V:   B  5.37 
R:   B  5.34 

T: p<0.0001 
P:   A  4.18 
V:   A  4.11 
P+R:  B  4.03 
R:   B  4.01 

2W ANOVA 
G x T 

G x T: p=0.1459 G x T: p=0.88 G x T: p=0.4695 G x T: p=0.8513 G x T: p=0.4973 

 937 
GROUP Iap (mm4) Iml (mm4) Imax (mm4) Imin (mm4) TMD (g/cm3 HA) 
WT VEH 0.228±0.029 0.144±0.015 0.237±0.029 0.135±0.015 1.29±0.03 

Nmp4-/- VEH 0.219±0.008 0.143±0.012 0.224±0.013 0.137±0.012 0.89±0.01 
WT RAL 0.231±0.016 0.144±0.012 0.237±0.016 0.138±0.010 1.27±0.01 

Nmp4-/- RAL 0.228±0.021 0.142±0.012 0.235±0.022 0.138±0.014 0.89±0.01 
WT PTH 0.285±0.048 0.179±0.022 0.297±0.053 0.167±0.019 1.28±0.03 

Nmp4-/- PTH 0.279±0.025 0.173±0.007 0.281±0.022 0.169±0.010 0.89±0.01 
WT PTH+RAL 0.291±0.044 0.173±0.016 0.302±0.043 0.162±0.016 1.28±0.02 

Nmp4-/- 
PTH+RAL 

0.270±0.030 0.174±0.019 0.276±0.031 0.167±0.017 0.88±0.01 

2W ANOVA 
GENOTYPE 

G: p=0.1257 G: p=0.5224 G: p=0.0325 
WT    A  0.268 
Nmp4-/-:  B  0.254 
 

G: p=0.4557 G: p<0.0001 
WT    A  1.28 
Nmp4-/-:  B  0.886 

2W ANOVA 
TREATMENT 

T: p<0.0001 
P   A  0.282 
P+R: A  0.281 
R:  B  0.230 
V:  B  0.223 

T: p<0.0001 
P   A  0.176 
P+R: A  0.173 
V:  B  0.143 
R:  B  0.143 

T: p<0.0001 
P+R A  0.289 
P:  A  0.289 
R:  B  0.236 
V:  B  0.230 

T: p<0.0001 
P:  A  0.168 
P+R: A  0.165 
R:  B  0.138 
V:  B  0.136 

T: p=0.2325 

2W ANOVA 
G x T 

G x T: p=0.7276 G x T: p=0.9050 G x T: p=0.6236 G x T: p=0.9269 G x T: p=0.3597 

 938 
TABLE 3: Femoral cortical architecture from WT and Nmp4-/- mice treated with vehicle (V), raloxifene (R), parathyroid hormone (P), and parathyroid 939 
hormone + raloxifene (P+R). Statistical analyses were performed using 2W ANOVA tests setting genotype (G) and treatment (T) as the independent 940 
variables. Statistical significance was set at p≤0.05. The statistical results list the cohorts by genotype, treatment, and genotype x treatment. 941 
Cohorts not connected by the same letter are statistically different. The average value of the specific parameter follows the letter. The data 942 
represents average ± SD, n=7-15 mice/group. See text for explanation of results. ABBREVIATIONS: HA hydroxyapatite; Iap moment of inertia about the 943 
femoral anterior–posterior length axis; Imax maximum moment of inertia; Imin minimum moment of inertia; Iml moment of inertia about the femoral medial–lateral axis; 944 
TMD tissue mineral density.  945 

Downloaded from www.physiology.org/journal/ajpendo by ${individualUser.givenNames} ${individualUser.surname} (134.068.173.202) on January 22, 2019.



 946 
TABLE 4: ESTIMATED MATERIAL PROPERTIES 947 

GROUP Ultimate Stress Yield Stress Strain to Yield (µε) Total Strain (µε) Modulus (GPa) Resilience (MPa) Toughness (MPa) 
WT VEH 141.12±6.97 105.73±12.89 16012±1124 99029±30556 7.87±0.30 0.95±0.18 9.19±1.93 

Nmp4-/- VEH 150.08±8.71 121.23±21.47 16982±2858 82378±26470 8.55±0.54 1.08±0.31 8.86±2.59 
WT RAL 155.49±5.00 117.92±5.13 16552±371 83863±19659 8.06±0.75 1.06±0.12 9.15±1.86 

Nmp4-/- RAL 159.48±13.63 127.00±22.37 16999±2556 75610±19939 8.24±1.13 1.20±0.35 8.95±2.10 
WT PTH 152.07±4.20 97.09±15.56 16881±3008 90210±29366 7.57±1.23 0.85±0.28 9.46±2.63 

Nmp4-/- PTH 157.94±5.37 97.77±9.56 15021±1932 91519±26401 7.93±0.30 0.82±0.23 10.31±2.28 
WT PTH+RAL 166.39±3.78 102.76±18.16 15452±34324 69998±19460 8.44±0.38 0.89±0.32 8.16±1.90 

Nmp4-/- PTH+RAL 173.39±10.84 114.52±13.66 15321±708 63635±16321 8.64±1.06 0.99±0.20 8.09±1.91 
2W ANOVA 
GENOTYPE 

G: p=0.0012 
Nmp4-/-:  A  160.22 
WT:   B  153.77 

G: p=0.0109 
Nmp4-/-:  A  115.13 
WT:   B  105.87 

G: p=0.7849 G: p=0.1310 G: p=0.0559 G: p=0.1304 G: p=0.8913 

2W ANOVA 
TREATMENT 

T: p<0.0001 
P+R: A  169.89 
R:  B  157.48 
P:  B  155.00 
V:  C  145.60 

T: p<0.0001 
R:  A  122.46 
V:  AB 113.48 
P+R: BC 108.64 
P:  C  97.43 

T: p=0.2740 T: p=0.0016 
P:  A  90864 
V:  A  90704 
R:  AB 79737 
P+R: B  66816 

T: p=0.0318 
P+R: A   8.54 
V:  AB  8.21 
R:  AB  8.15 
P:  B   7.55 

T: p=0.0031 
R:  A   1.13 
V:  AB  1.01 
P+R: AB  0.94 
P:  B   0.84 

T: p=0.0553 

2W ANOVA 
G x T 

G x T: p=0.8141 G x T: p=0.5067 G x T: p=0.2220 G x T: p=0.6425 G x T: p=0.7598 G x T: p=0.6545 G x T: p=0.7901 

 948 
TABLE 4: Estimated femoral material properties from WT and Nmp4-/- mice treated with vehicle (V), raloxifene (R), parathyroid hormone (P), and 949 
parathyroid hormone + raloxifene (P+R). Statistical analyses were performed using 2W ANOVA tests setting genotype (G) and treatment (T) as the 950 
independent variables. Statistical significance was set at p≤0.05. The statistical results list the cohorts by genotype, treatment, and genotype x 951 
treatment. Cohorts not connected by the same letter are statistically different. The average value of the specific parameter follows the letter. The 952 
data represents average ± SD, n=7-14 mice/group. 953 
  954 
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TABLE 5: STRUCTURAL MECHANCIAL PROPERTIES 955 
GROUP Yield force (N) Ultimate force (N) Displacement to yield (µm) Post yield displacement (µm) Total displacement (µm) 
WT VEH 10.08±0.99 13.52±1.16 162.51±12.49 843.05±320.03 1005.56±312.72 

Nmp4-/- VEH 11.65±2.44 14.27±0.92 172.64±26.99 619.27±224.97 792.43±217.81 
WT RAL 11.19±0.20 14.67±0.41 168.22±12.96 689.72±208.95 861.14±199.79 

Nmp4-/- RAL 15.22±1.20 15.22±1.20 173.53±15.73 594.32±202.51 769.68±193.22 
WT PTH 11.04±2.06 16.94±1.67 163.51±28.73 711.57±297.33 875.08±288.88 

Nmp4-/- PTH 11.24±1.79 17.06±1.38 146.49±18.81 742±255.98 894.10±252.89 
WT PTH+RAL 11.50±1.18 18.38±2.31 152.56±34.07 540.96±205.28 693.53±202.12 

Nmp4-/- PTH+RAL 13.66±2.51 19.43±2.18 152.09±8.08 458.30±166.36 578.77±109.62 
2W ANOVA 
GENOTYPE 

G: p= 0.0037 
Nmp4-/-:  A  12.22 
WT:   B  10.95 

G: p=0.0680 G: p=0.9119 G: p=0.0610 
 

G: p= 0.0379 
WT:   A  858.83 
Nmp4-/-:  B  758.74 

2W ANOVA 
TREATMENT 

T: p=0.0243 
P+R:  A  12.58 
R:   AB 11.76 
P:   AB 11.14 
V:   B  10.87 

T: p<0.0001 
P+R:  A  18.91 
P:   B  17.00 
R:   C  14.95 
V:   C  13.90 

T: p=0.0137 
R:   A   170.87 
V:   AB  167.57 
P:   AB  155.00 
P+R:  B   152.33 

T: p=0.0028 
V:   A   731.16 
P:   A   726.78 
R:   AB  642.02 
P+R:  B   499.64 

T: p=0.0005 
V:   A   898.99 
P:   A   884.59 
R:   A   815.41 
P+R:  B   636.15 

2W ANOVA 
G x T 

G x T: p=0.4051 G x T: p=0.7791 G x T: p=0.1830 G x T: p=0.3475 G x T: p=0.3910 

 956 
GROUP Stiffness (N/mm) Work to Yield (mJ) Post Yield Work (mJ) Total Work (mJ) 
WT VEH 95.73±6.19 0.92±0.16 8.01±2.16 8.93±2.05 

Nmp4-/- VEH 104.39±10.17 1.05±0.31 7.53±2.63 8.64±2.63 
WT RAL 106.07±12.65 1.05±0.08 8.10±1.91 9.15±1.90 

Nmp4-/- RAL 105.42±16.10 1.19±0.34 7.63±2.14 8.91±2.17 
WT PTH 120.02±22.68 0.94±0.32 9.44±2.92 10.38±2.76 

Nmp4-/- PTH 121.91±16.51 0.89±0.23 10.24±2.81 11.18±2.74 
WT PTH+RAL 130.49±10.66 0.92±0.29 7.98±1.97 8.97±1.85 

Nmp4-/- PTH+RAL 132.83±17.91 1.25±0.45 7.69±2.61 8.94±2.45 
2W ANOVA 
GENOTYPE 

G: p= 0.3316 G: p=0.0315 
Nmp4-/-:  A  1.10 
WT:   B  0.96 

G: p=0.8291 G: p=0.8989 
 

2W ANOVA 
TREATMENT 

T: p<0.0001 
P+R:  A  131.66 
P:   A  120.97 
R:   B  105.74 
V:   B  100.06 

T: p=0.0985 T: p=0.0103 
P:   A  9.84 
R:   B  7.87 
P+R:  B  7.83 
V:   B  7.77 

T: p=0.0159 
P:   A   10.78 
R:   AB  9.03 
P+R:  B   8.95 
V:   B   8.79 

2W ANOVA 
G x T 

G x T: p=0.7575 G x T: p=0.2168 G x T: p=0.7762 G x T: p=0.8461 

 957 
TABLE 5: Estimated femoral structural mechanical properties from WT and Nmp4-/- mice treated with vehicle (V), raloxifene (R), parathyroid 958 
hormone (P), and parathyroid hormone + raloxifene (P+R). Statistical analyses were performed using 2W ANOVA tests setting genotype (G) and 959 
treatment (T) as the independent variables. Statistical significance was set at p≤0.05. The statistical results list the cohorts by genotype, treatment, 960 
and genotype x treatment. Cohorts not connected by the same letter are statistically different. The average value of the specific parameter follows 961 
the letter. The data represents average ± SD, n=7-14 mice/group. 962 
 963 
 964 
 965 
 966 
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Supplemental Table S1: ChIP-seq data, located in separate xlsx file GEO accession number 1346 
GSE112693 for complete ChIP-Seq dataset 1347 
Nmp4 occupancy sties in MC3T3-E1 osteoblast-like cells as determined by ChIP-seq analysis 1348 
(Childress et al., 2015). Peaks are mapped to mouse genome build mm10. Column A: gene 1349 
IDs from Ensembl genes, UCSC genes, etc; Column B: gene symbol; Column C: strand; 1350 
Column D: chromosome; Column E: location of transcription start site (TSS); Column F: 1351 
location of transcription end site (TES); Column G: Location of Nmp4 in Zones 1-4. A peak was 1352 
assigned to a promoter region if it was within -5 to+2 kb from a transcription start site (TSS, 1353 
Zone 1). The Nmp4 peak was assigned to Zone 2, the intragenic region, if it was located within 1354 
the range defined by the TSS and the transcription end site, and not within the promoter range 1355 
of the same gene. To assign a peak to Zone 3, the intergenic region, it had to be -10 000 kb 1356 
from the TSS and +10 000 kb from the transcription end site, and not within the promoter range 1357 
of the same gene. Peaks that did not fit any of these definitions were assigned to the 1358 
classification “other” (Zone 4). A peak could be assigned to multiple functional regions in an 1359 
area of the genome harboring multiple genes. Note for Nmp4 gene occupancy we used genes 1360 
identified in Zones 1 & 2 and listed in Supplemental Table 2. Column H: Peak_start, the 1361 
recorded peak start position; Column I: Peak_end: the recorded peak end position; Column J: 1362 
Peak_position, the middle point position of a peak; Column K: Peak_value, the peak score. This 1363 
parameter is the measurement of overall (usually average) enrichment for the region. 1364 
  1365 



 

Supplemental Table S2: RNA-seq data, located in separate xlsx file [GEO accession number 1366 
GSE112694] Expression of all genes was normalized based on the expression of Gusb (see 1367 
Materials and Methods). The columns are defined as follows (also see file) 1368 
 1369 
Chr                               chromosome 1370 
Start                               start position of exons 1371 
End                               end position of exons 1372 
Strand                              strand 1373 
Length                              gene length 1374 
KO.day3_vs_WT.day3_logFC                 log2 fold change 1375 
KO.day3_vs_WT.day3_PValue                p value 1376 
KO.day3_vs_WT.day3_FDR                  false discovery rate 1377 
KO.day7_vs_WT.day7_logFC                 log2 fold change 1378 
KO.day7_vs_WT.day7_PValue                p value 1379 
KO.day7_vs_WT.day7_FDR                  false discovery rate 1380 
WT.day7_vs_WT.day3_logFC                 log2 fold change 1381 
WT.day7_vs_WT.day3_PValue                p value 1382 
WT.day7_vs_WT.day3_FDR                  false discovery rate 1383 
KO.day7_vs_KO.day3_logFC                 log2 fold change 1384 
KO.day7_vs_KO.day3_PValue                p value 1385 
KO.day7_vs_KO.day3_FDR                  false discovery rate 1386 
KO-day7/WT-day7_vs_KO-day3/WT-day3_logFC      log2 fold change 1387 
KO-day7/WT-day7_vs_KO-day3/WT-day3_PValue     p value 1388 
KO-day7/WT-day7_vs_KO-day3/WT-day3_FDR       false discovery rate 1389 
*KOD3_5                            cpm (counts per million reads) 1390 
KOD3_6                             cpm (counts per million reads) 1391 
KOD3_7                             cpm (counts per million reads) 1392 
KOD3_8                             cpm (counts per million reads) 1393 
KOD7_13                            cpm (counts per million reads) 1394 
KOD7_14                            cpm (counts per million reads) 1395 
KOD7_15                            cpm (counts per million reads) 1396 
KOD7_16                            cpm (counts per million reads) 1397 
WTD3_1b                            cpm (counts per million reads) 1398 
WTD3_1                             cpm (counts per million reads) 1399 
WTD3_3                             cpm (counts per million reads) 1400 
WTD3_4                             cpm (counts per million reads) 1401 
WTD7_10b                           cpm (counts per million reads) 1402 
WTD7_10                            cpm (counts per million reads) 1403 
WTD7_11                            cpm (counts per million reads) 1404 
WTD7_9                             cpm (counts per million reads) 1405 
KOD3_5                             raw read count 1406 
KOD3_6                             raw read count 1407 
KOD3_7                             raw read count 1408 
KOD3_8                             raw read count 1409 
KOD7_13                            raw read count 1410 
KOD7_14                            raw read count 1411 
KOD7_15                            raw read count 1412 
KOD7_16                            raw read count 1413 
WTD3_1b                            raw read count 1414 
WTD3_1                             raw read count 1415 
WTD3_3                             raw read count 1416 
WTD3_4                             raw read count 1417 
WTD7_10b                           raw read count 1418 
WTD7_10                            raw read count 1419 
WTD7_11                            raw read count 1420 
WTD7_9                             raw read count 1421 
 1422 
*KOD3_5, KOD3_6, KOD3_7; KOD3_8:           4 technical replicates for Nmp4-/- Day 3 in culture 1423 
KOD7_13, KOD7_14, KOD7_15, KOD7_16:         4 technical replicates for Nmp4-/- Day 7 in culture 1424 
WTD3_1b, WTD3_1, WTD3_3, WDT3_4:           4 technical replicates for wild type (WT) Day 3 in culture 1425 
WTD7_10b, WTD7_10, WTD7_11, WTD7_9:         4 technical replicates for wild type (WT) Day 7 in culture1426 



 

Supplemental Table S3: Day 3 IPA canonical pathways, located in separate xls file 1427 
IPA Canonical pathways perturbed by loss of Nmp4 in MPSCs harvested at Day 3 in culture. 1428 
Pathways were identified as significantly sensitive to Nmp4 status that achieved a value of –1429 
log(p-value) ≥1.30.  1430 

• Column A: identity of the canonical pathway;  1431 
• Column B: –log(p-value);  1432 
• Column C: Ratio, the number of genes listed in the dataset over the total number of 1433 

genes in the pathway.  1434 
• Column D z-score of pathway. The activation state of the pathway is predicted to be 1435 

increased if the z-score is ≥ 2 and attenuated if the z-score  ≤ −2. Those pathways listed 1436 
as #NUM indicate that the z-score algorithm cannot predict whether the pathway activity 1437 
is increased or decreased in the Nmp4-/- cells.  1438 

• Column E: molecules in the dataset belonging to pathway. 1439 
 1440 
Supplemental Table S4: Day 7 IPA canonical pathways, located in separate xls file 1441 
IPA Canonical pathways perturbed by loss of Nmp4 in MPSCs harvested at Day 7 in culture. 1442 
Pathways were identified as significantly sensitive to Nmp4 status that achieved a value of –1443 
log(p-value) ≥1.30. See Supplemental Table S3 legend for identity of table columns.  1444 
 1445 
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