37 research outputs found

    Primary Lymphoma of the Kidney in an Adult Male – The First Reported Case from Iran

    Get PDF
    We report a case of primary renal lymphoma in a 48-year-old man. He was admitted with a large homogenous right renal mass that was revealed by computed tomography scan of the abdomen and pelvis. The patient underwent transperitoneal right radical nephrectomy. Pathologic diagnosis was in favor of primary renal lymphoma

    Motor neuron diseases caused by a novel VRK1 variant – A genotype/phenotype study

    Get PDF
    Background: Motor neuron disorders involving upper and lower neurons are a genetically and clinically heterogenous group of rare neuromuscular disorders with overlap among spinal muscular atrophies (SMAs) and amyotrophic lateral sclerosis (ALS). Classical SMA caused by recessive mutations in SMN1 is one of the most common genetic causes of mortality in infants. It is characterized by degeneration of anterior horn cells in the spinal cord, leading to progressive muscle weakness and atrophy. Non-SMN1-related spinal muscular atrophies are caused by variants in a number of genes, including VRK1, encoding the vaccinia- related kinase 1 (VRK1). VRK1 variants have been segregated with motor neuron diseases including SMA phenotypes or hereditary complex motor and sensory axonal neuropathy (HMSN), with or without pontocerebellar hypoplasia or microcephaly. Results: Here, we report an association of a novel homozygous splice variant in VRK1 (c.1159 + 1G>A) with childhood-onset SMA or juvenile lower motor disease with brisk tendon reflexes without pontocerebellar hypoplasia and normal intellectual ability in a family with five affected individuals. We show that the VRK1 splice variant in patients causes decreased splicing efficiency and a mRNA frameshift that escapes the nonsensemediated decay machinery and results in a premature termination codon. Conclusions: Our findings unveil the impact of the variant on the VRK1 transcript and further support the implication of VRK1 in the pathogenesis of lower motor neuron diseases

    Antioxidant properties of Artemisia absinthium

    No full text
    Introduction: Delayed tendon healing is still found to be among the complications that occur most often after tendon repair

    Antioxidant properties of Artemisia absinthium accelerate healing of experimental Achilles tendon injury in rabbits

    No full text
    Introduction: Delayed tendon healing is still found to be among the complications that occur most often after tendon repair

    The Effects of Environmental Factors on Biological Remediation of Petroleum Hydrocarbon Contaminated Soil

    No full text
    Among the consequences of discharging industrial wastes to land and water bodies, is the widespread accumulation and migration of toxic chemical mixtures in soil and groundwater resources. It is believed that the accumulation of contaminants in the environment constitutes a serious threat to ecological and human health. Bioremediation is an effective measure in dealing with such contaminations particularly those from petroleum hydrocarbon sources; moreover bioremediation is emerging as a promising technology for the treatment of soil and groundwater contamination. Therefore the goal of this study is discussing the theory and practice of biological remediation of petroleum hydrocarbon contaminated soils and assessing the effects of operational conditions and parameters such as: temperature, dissolved oxygen concentration and  pH on the removal rate of the target contaminant which is handled in the designed reactor. Due to large production and consumption rate of diesel fuel inIran and many other countries, diesel fuel has been selected as target contaminant. In this study TOC and COD testing methods have been used to measure and assess the removal rate of the contaminant in the reactor. The experimental results indicate that, considering the operational conditions the indigenous microorganisms which have been separated from the soil are able to remove 50 to 83 percent of the contaminant after 30 days. Thereafter on the base of the results and considering the laboratorial specifications and conditions applied in this project, the optimum values of temperature, dissolved oxygen concentration andpH were respectively determined as 35°C, 4mg/L and 7

    Truncating CHRNG mutations associated with interfamilial variability of the severity of the Escobar variant of multiple pterygium syndrome

    Get PDF
    BACKGROUND:In humans, muscle-specific nicotinergic acetylcholine receptor (AChR) is a transmembrane protein with five different subunits, coded by CHRNA1, CHRNB, CHRND and CHRNG/CHRNE. The gamma subunit of AChR encoded by CHRNG is expressed during early foetal development, whereas in the adult, the γ subunit is replaced by a ε subunit. Mutations in the CHRNG encoding the embryonal acetylcholine receptor may cause the non-lethal Escobar variant (EVMPS) and lethal form (LMPS) of multiple pterygium syndrome. The MPS is a condition characterised by prenatal growth failure with pterygium and akinesia leading to muscle weakness and severe congenital contractures, as well as scoliosis. RESULTS:Our whole exome sequencing studies have identified one novel and two previously reported homozygous mutations in CHRNG in three families affected by non-lethal EVMPS. The mutations consist of deletion of two nucleotides, cause a frameshift predicted to result in premature termination of the foetally expressed gamma subunit of the AChR. CONCLUSIONS:Our data suggest that severity of the phenotype varies significantly both within and between families with MPS and that there is no apparent correlation between mutation position and clinical phenotype. Although individuals with CHRNG mutations can survive, there is an increased frequency of abortions and stillbirth in their families. Furthermore, genetic background and environmental modifiers might be of significance for decisiveness of the lethal spectrum, rather than the state of the mutation per se. Detailed clinical examination of our patients further indicates the changing phenotype from infancy to childhood

    Phenotypes of Myopathy-Related Beta-Tropomyosin Mutants in Human and Mouse Tissue Cultures

    Get PDF
    <div><p>Mutations in <i>TPM2</i> result in a variety of myopathies characterised by variable clinical and morphological features. We used human and mouse cultured cells to study the effects of β-TM mutants. The mutants induced a range of phenotypes in human myoblasts, which generally changed upon differentiation to myotubes. Human myotubes transfected with the E41K-β-TM<sub>EGFP</sub> mutant showed perinuclear aggregates. The G53ins-β-TM<sub>EGFP</sub> mutant tended to accumulate in myoblasts but was incorporated into filamentous structures of myotubes. The K49del-β-TM<sub>EGFP</sub> and E122K-β-TM<sub>EGFP</sub> mutants induced the formation of rod-like structures in human cells. The N202K-β-TM<sub>EGFP</sub> mutant failed to integrate into thin filaments and formed accumulations in myotubes. The accumulation of mutant β-TM<sub>EGFP</sub> in the perinuclear and peripheral areas of the cells was the striking feature in C2C12. We demonstrated that human tissue culture is a suitable system for studying the early stages of altered myofibrilogenesis and morphological changes linked to myopathy-related β-TM mutants. In addition, the histopathological phenotype associated with expression of the various mutant proteins depends on the cell type and varies with the maturation of the muscle cell. Further, the phenotype is a combinatorial effect of the specific amino acid change and the temporal expression of the mutant protein.</p></div

    Expression of the GBGT1 gene and the Forssman antigen in red blood cells in a Palestinian population

    No full text
    The Forssman antigen (FORS1 Ag) is expressed on human red blood cells (RBCs). We investigated its presence on RBCs from Palestinian subjects and Swedish subjects by serological testing and by sequencing part of exon 7 of the GBGT1 gene, which encodes Forssman synthase.info:eu-repo/semantics/publishedVersio

    Recessive Charcot-Marie-Tooth and multiple sclerosis associated with a variant in MCM3AP

    No full text
    Variants in MCM3AP, encoding the germinal-centre associated nuclear protein, have been associated with progressive polyneuropathy with or without intellectual disability and ptosis in some cases, and with a complex phenotype with immunodeficiency, skin changes and myelodysplasia. MCM3AP encoded protein functions as an acetyltransferase that acetylates the replication protein, MCM3, and plays a key role in the regulation of DNA replication. In this study, we report a novel variant in MCM3AP (p.Ile954Thr), in a family including three affected individuals with characteristic features of Charcot-Marie-Tooth neuropathy and multiple sclerosis, an inflammatory condition of the central nervous system without known genetic cause. The affected individuals were homozygous for a missense MCM3AP variant, located at the Sac3 domain, which was predicted to affect conserved amino acid likely important for the function of the germinal-centre associated nuclear protein. Our data support further expansion of the clinical spectrum linked to MCM3AP variant and highlight that MCM3AP should be considered in patients with accompaniment of recessive motor axonal Charcot-Marie-Tooth neuropathy and multiple sclerosis.CC BY 4.0</p
    corecore