240 research outputs found
Coexistence of diffusive resistance and ballistic persistent current in disordered metallic rings with rough edges: Possible origin of puzzling experimental values
Typical persistent current () in a mesoscopic normal metal ring with
disorder due to rough edges and random grain boundaries is calculated by a
scattering matrix method. In addition, resistance of a corresponding metallic
wire is obtained from the Landauer formula and the electron mean free path
() is determined. If disorder is due to the rough edges, a ballistic
persistent current is found to coexist with the
diffusive resistance (), where is the Fermi velocity and is the ring length. This ballistic current is due to a single electron
that moves almost in parallel with the rough edges and thus hits them rarely
(it is shown that this parallel motion exists in the ring geometry owing to the
Hartree-Fock interaction). Our finding agrees with a puzzling experimental
result , reported by Chandrasekhar et al. [Phys. Rev.
Lett. \textbf{67}, 3578 (1991)] for metallic rings of length .
If disorder is due to the grain boundaries, our data reproduce theoretical
result that holds for the white-noise-like
disorder and has been observed in recent experiments. Thus, result
in a disordered metallic ring of length is as
normal as result . Which result is observed
depends on the nature of disorder. Experiments that would determine
and in correlation with the nature of disorder can be instructive.Comment: arXiv admin note: substantial text overlap with arXiv:1203.651
Coherent resistance of a disordered 1D wire: Expressions for all moments and evidence for non-Gaussian distribution
We study coherent electron transport in a one-dimensional wire with disorder
modeled as a chain of randomly positioned scatterers. We derive analytical
expressions for all statistical moments of the wire resistance . By means
of these expressions we show analytically that the distribution of the
variable is not exactly Gaussian even in the limit of weak
disorder. In a strict mathematical sense, this conclusion is found to hold not
only for the distribution tails but also for the bulk of the distribution
.Comment: Revised version, 8 pages, 4 figures, RevTeX
Frictional drag between quantum wells mediated by fluctuating electromagnetic field
We use the theory of the fluctuating electromagnetic field to calculate the
frictional drag between nearby two-and three dimensional electron systems. The
frictional drag results from coupling via a fluctuating electromagnetic field,
and can be considered as the dissipative part of the van der Waals interaction.
In comparison with other similar calculations for semiconductor two-dimensional
system we include retardation effects. We consider the dependence of the
frictional drag force on the temperature , electron density and separation
. We find, that retardation effects become dominating factor for high
electron densities, corresponding thing metallic film, and suggest a new
experiment to test the theory. The relation between friction and heat transfer
is also briefly commented on.Comment: 14 pages, 4 figure
Making On-Demand Routing Efficient with Route-Request Aggregation
In theory, on-demand routing is very attractive for mobile ad hoc networks
(MANET), because it induces signaling only for those destinations for which
there is data traffic. However, in practice, the signaling overhead of existing
on-demand routing protocols becomes excessive as the rate of topology changes
increases due to mobility or other causes. We introduce the first on-demand
routing approach that eliminates the main limitation of on-demand routing by
aggregating route requests (RREQ) for the same destinations. The approach can
be applied to any existing on-demand routing protocol, and we introduce the
Ad-hoc Demand-Aggregated Routing with Adaptation (ADARA) as an example of how
RREQ aggregation can be used. ADARA is compared to AODV and OLSR using
discrete-event simulations, and the results show that aggregating RREQs can
make on-demand routing more efficient than existing proactive or on-demand
routing protocols
Phonon mediated drag in double layer two dimensional electron systems
Experiments studying phonon mediated drag in the double layer two dimensional
electron gas system are reported. Detailed measurements of the dependence of
drag on temperature, layer spacing, density ratio, and matched density are
discussed. Comparisons are made to theoretical results [M. C. Bonsager et al.,
Phys. Rev. B 57, 7085 (1998)] which propose the existence of a new coupled
electron-phonon collective mode. The layer spacing and density dependence at
matched densities for samples with layer spacings below 2600 A do not support
the existence of this mode, showing behavior expected for independent electron
and phonon systems. The magnitude of the drag, however, suggests the alternate
limit; one in which electrons and phonons are strongly coupled. The results for
still larger layer spacing show significant discrepancies with the behavior
expected for either limit.Comment: 9 pages, 9 figures, Late
Reflecting on loss in Papua New Guinea
This article takes up the conundrum of conducting anthropological fieldwork with people who claim that they have 'lost their culture,' as is the case with Suau people in the Massim region of Papua New Guinea. But rather than claiming culture loss as a process of dispossession, Suau claim it as a consequence of their own attempts to engage with colonial interests. Suau appear to have responded to missionization and their close proximity to the colonial-era capital by jettisoning many of the practices characteristic of Massim societies, now identified as 'kastom.' The rejection of kastom in order to facilitate their relations with Europeans during colonialism, followed by the mourning for kastom after independence, both invite consideration of a kind of reflexivity that requires action based on the presumed perspective of another
Frictional drag between quantum wells mediated by phonon exchange
We use the Kubo formalism to evaluate the contribution of acoustic phonon
exchange to the frictional drag between nearby two-dimensional electron
systems. In the case of free phonons, we find a divergent drag rate
(). However, becomes finite when phonon
scattering from either lattice imperfections or electronic excitations is
accounted for. In the case of GaAs quantum wells, we find that for a phonon
mean free path smaller than a critical value, imperfection
scattering dominates and the drag rate varies as over many
orders of magnitude of the layer separation . When exceeds the
critical value, the drag rate is dominated by coupling through an
electron-phonon collective mode localized in the vicinity of the electron
layers. We argue that the coupled electron-phonon mode may be observable for
realistic parameters. Our theory is in good agreement with experimental results
for the temperature, density, and -dependence of the drag rate.Comment: 45 pages, LaTeX, 8 postscript file figure
Spatio-temporal dynamics of quantum-well excitons
We investigate the lateral transport of excitons in ZnSe quantum wells by
using time-resolved micro-photoluminescence enhanced by the introduction of a
solid immersion lens. The spatial and temporal resolutions are 200 nm and 5 ps,
respectively. Strong deviation from classical diffusion is observed up to 400
ps. This feature is attributed to the hot-exciton effects, consistent with
previous experiments under cw excitation. The coupled transport-relaxation
process of hot excitons is modelled by Monte Carlo simulation. We prove that
two basic assumptions typically accepted in photoluminescence investigations on
excitonic transport, namely (i) the classical diffusion model as well as (ii)
the equivalence between the temporal and spatial evolution of the exciton
population and of the measured photoluminescence, are not valid for
low-temperature experiments.Comment: 8 pages, 6 figure
Ultrafast relaxation of photoexcited carriers in semiconductor quantum wires: A Monte Carlo approach
A detailed analysis of the cooling and thermalization process for photogenerated carriers in semiconductor quantum wires is presented. The energy relaxation of the nonequilibrium carrier distribution is investigated for the ‘‘realistic'' case of a rectangular multisubband quantum-wire structure. By means of a direct ensemble Monte Carlo simulation of both the carrier and the phonon dynamics, all the nonlinear phenomena relevant for the relaxation process, such as carrier-carrier interaction, hot-phonon effects, and degeneracy, are investigated. The results of these simulated experiments show a significant reduction of the carrier-relaxation process compared to the bulk case, which is mainly due to the reduced efficiency of carrier-carrier scattering; on the contrary, the role of hot-phonon effects and degeneracy seems to be not so different from that played in bulk semiconductors
- …
