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Coherent resistance of a disordered one-dimensional wire: Expressions for all moments
and evidence for non-Gaussian distribution
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We study coherent electron transport in a one-dimensional wire with disorder modeled as a chain of ran-
domly positioned scatterers. We derive analytical expressions for all statistical moments of the wire resistance
p. By means of these expressions we show analytically that the distribBiidh of the variablef =In(1
+p) is not exactly Gaussian even in the limit of weak disorder. In a strict mathematical sense, this conclusion
is found to hold not only for the distribution tails but also for the bulk of the distribuRgh).
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[. INTRODUCTION In this paper, we study coherent transport in a 1D wire
with disorder modeled as a chain of randomly positioned
It is known that a coherent electron wave in a disorderedscatterers. We derive analytically all statistical moments of
one-dimensionallD) wire of infinite length is exponentially the wire resistance. By means of these moments, we prove in
localized by an arbitrary weak disorder The resistance  the limit of long wires that the distributioR(f) always de-
of the 1D wire of lengthL should therefore increase with ~ Viates from the Gauss distribution. The form B(f) for f
exponentially. In fact, the resistance wildly fluctuates from> f is concluded to be nonunivers@ependent on the model
wire to wire in an ensemble of macroscopically identicalof disordej even in the limit of weak disorder. In other
wires (with disorder in each wire being microscopically dif- words, in realistic wires disorder is never weak enough for
feren) and what increases exponentially is the mean resisP(f) to be exactly Gaussian. The only approximation of our
tance and also the “typical” resistanéé. analysis is the phase randomization hypothesis. We confirm
It has also become clear that the resistapcis not a  its validity by numerical simulations. _
self-averaged quantifyin fact, the resistance fluctuations are _In Sec. Il, we specify two different model of disordered
so huge thati) the resistance dispersion exceeds the mea#D wire. As a model | we consider the statistical ensemble of
resistance many orders of magnitudé) the higher mo- Wires with the same number of scatterers in each wire, in
ments of the resistance exceed the mean resistance evBipdel Il we let the number of scatterers to fluctuate from
more drastically, andiii ) the mean resistance is much larger Wire to wire. In Sec. lll, the moments of the wire resistance
than the typical one. These features are due to the fact thaf€ derived for both models analytically assuming the phase
the moments op are governed by extremely high resistancesrandomization hypothe_5|s. T.hIS hy_potheS|s is verified in Sec.
occurring with an extremely lowbut nonzerp probability. 1V by means of numerical simulations. In Sec. V, we prove
To avoid the absence of self-averaging, the distributiorfat our expressions for the resistance moments are not con-
P(f) of the variablef =In(1+p) was studied instead of the Sistent with the Gaussian form &f(f) even in the limit of
distribution P(p).58 In contrast toP(p), distributionP(f)  Weak disorder. Discussion is given in Sec. VI.

is well localized around the mean valde It is commo_nly_ Il. MODEL OF DISORDERED 1D WIRE
accepted that for long enough wires the bulk of the distribu-
tion P(f) is described by the Gauss function We consider a 1D wire with disorder represented by ran-

dom potential

P(f)= : .Y

1 o _(f—f_)2 N
2maz s 2A2 V(x)=i§1 y8(X—X;), 2)

whereA?=f2—f? is the variance, while the tails of the dis- \yhere y8(x—x) is the s-shaped impurity potential of

tribution P(f) are allowed to be nonuniversal and depend ongyrengthy, x; is theith impurity position selected at random
the model of disorder. In the limit of weak disorder it is 400 the wire, ant\ is the number of impurities in the wire.
accepted thah?=2f, i.e., that the distributioiil) obeys the  Since the positions;; are mutually independent, the dis-
single-parameter scaling. The two-parameter scaling is agancesa=x;,,—x; between the neighboring impurities fol-
cepted to appear for strong disorder, whexg is not an  ow the distributionP(a) = N,exp(—N,a), whereN, is the 1D
unambiguous function of.*° Interesting to note, the authors density of impurities anle‘l is the mean distance between
of Ref. 11 found two-parameter scaling also for weak disorthe neighboring impurities.

der, namely, for the Anderson 1D disorder at certain condi- In the following sections we examine two models. In
tions. model I, we consider the statistical ensemble of wires With
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fixed in each wire to its mean valy&l). In model Il, we fix  this configuration an extra impurity at positiaq , ;, we can
the wire lengthL and we letN to fluctuate from wire to wire  expressRy,; throughRy and R,. It is useful to express

according to the distribution Ry 1 in the fornf
G(N)=(N)Ne~M/NL. (3) Rus1  RytRi—2VRyRicosdy ©
It is easy to show that this distribution follows from the 1-Rys1 (I-RyY(1-R) °

distribution P(a). In both models{N)=LN; .
The wire resistancg (in units h/2e?) is given by the
Landauer formula

where ¢y is the phase specified below. Writing E®) in
terms of the wire resistance

R(er) = Ry
p:T(TF)’ 4 PN 1-Ry 9)

whereR and T are the reflection and transmission coeffi- and in terms of
cients describing the electron tunneling through disorder at
the Fermi energy.

Using Eq.(4) we follow a number of previous localization
practitioners. Instead of Eqg4) we could use the two-
terminal resistancp=1/T=R/T+1, which involves an ex- We gét
tra term(unity on the right-hand sideepresenting the fun- N1
damental resistance of contacts. The resista@jethus _ 1= 7 2
represents the resistance of disorder, directly measurable Pr-1= NPt 2 \/(M Dipntpivcosey.
only by four-probe techniques. The problem is that Ej. (11
ignores the effect of measurement probes We wish to
note that this is not a serious problem in our case. First, w
examine the regim&/T>1, for which the two-terminal re-
sistancep=R/T+ 1 coincides with Eq(4). Second, withp
=R/T+1 we would arrive at the same conclusions as with po=0 (12)
Eq. (4). Third, in principle, one can measuR¢T indirectly,
by measuring the two-terminal resistance and then subtracénd

\ _1+R 10
1— 1_R| ( )

The phasepy=2kra+ ¢o, wherea=xy1— Xy is the inter-
?mpurity distance, andp, is the (@-independentphase due
to the reflection by the obstacl&s Obviously,

ing unity.
For disorden(2), bothR andT can be obtained by solving R N1
the tunneling problem PI=17R T 2 (13
h? d? Note thatp, depends o), , p; depends orb, and ¢4, etc.,
“5m @JFV(X) Wi (X) =EW () (5 pyiq thus depends oby, dn_1, - .., b, anddy. _
If we assume thab>2m/kg, then ¢y changes rapidly
with boundary conditions with a and fluctuates at random from sample to sampla as

" i " fluctuates. The ensemble averagepQf. ; over the interim-
V(x—0)=e""+re ™, W(x—L)=te"", (6)  purity distancexy. ;— Xy then simplifies t&°

where&=1%2k?/2m is the electron energyn is the effective
mass, and, andt, are the reflection and transmission am-
plitudes. The coefficient®=|r,|? and T=|t,|?> need to be
evaluated at the Fermi wave vector kg .
The reflection coefficient of a single barrier is given as If we average Eq(11) over ¢y, the termecos¢y becomes
R|=Qzl(k§+92), whereQ =my/#2. We fix zero. If we the_n average ovefy_1, ..., ¢o, P4, We Ob-
tain the recursion equation

1 2
PNe1= o dédnpn+1- (14

ke=7.9x10" m™! (7) 1
andm=0.067M,, and we parametrize thé barrier byR, . Pn+1= NNt 5()\1_1)- (15
We ignore the fluctuations d®, as well as the spread of the
impurity potentials. We solve Eq.(15) with initial condition (12) and obtain the
mean resistance
I1l. RESISTANCE MOMENTS 1
A. Model | N= S(-1). (16)

We start with derivation of the mean resistance. Assume
that we know the reflection coefficieRy of a specific con- The higher moments can be obtained in the same way.
figuration of N randomly positioned impurities. If we add to The mth power of Eq.(11) averaged ovet, formally reads
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- N— m
PNs1=| Napnt —5— S VO Dot pRcosd
(17)
If we take into account th&t
1 2m 1 2m
2], do(cos)™" =2am| m (18)
and
2m 2m—1
27, d¢(cose) =0, (29
we easy see that E¢L7) takes the form
- m
pR-1= 2 admpy, (20)

where coefficientsy, (m) are polynomial functions of ;.
Averaging eachpl over ¢y_1, eachpk_, over ¢y_,, etc.,
we finally obtain the recursion relation

m

PN+1 2

m)PN (21

A general expression for coefficientg(m) is given in Ap-
pendix A, where we also derive

am(M)=[N\1— AT~ 1cosp]™. (22)

We can also obtain Eq22) by comparing the right-hand
sides of Eqs(17) and(20) for py— <, where they reduce to
[N1— VAZ—1cosp]™oh and am(m)pp, respectively.

We solve Eq(21) recursively. Suppose that tiedepen-
dence ofpy can be expressed in the form

~+ag(m)A)+ag(m). (23

Form=1, Eq.(23) coincides with Eq(16). Therefore\; in
Eq. (23) coincides with Eq.(10) anda;(1)=1/2, ag(1)=
—1/2. Once we know{, a;(1), andag(1), we cansolve
the problem fom=2 and determina.,, a,(2), a;(2), and
ao(2) (see Appendix B Generally, once we determine al}
and all coefficienta,(k) for 0O<n<k=m-—1, we can insert
expansion(23) into Eq.(21) and compare thal-independent
factors at all\}\_ ,,. This gives us linear equations

ph=an(MAN+ -

m

admne= 2 a(m)a(i)

(24

for all a,(m) with k<m and in addition the identity\
=an(m), ie.,

Am=[N1— VA2—1cosp]™ (25)

As a last step we calculate the coefficiagim) with help of

the initial condition(12). In Appendix B, this procedure is

demonstrated in detail fan=2. The result is

PHYSICAL REVIEW B 67, 165316 (2003

— 1 1 1
p§=g>\2‘—§w+ 3 (26)
where
1 2
)\2=§(3)\1—1). (27

Parameters\, characterize the exponential increasepgf
with N. Equation(25) expresses  analytically for arbitrary
k, for example, foorm=1 and 2 it reproduces relatiori$0)

and (27), respectively. We present also

5, 3
)\SZE)\:L_E)\:L, (28)
3, 15, 3 -

7\4—§7\1_Z)\1+§, (29

63 . 35 , 15
)\5:§)\1_Z)\1+§)\1, (30)
N 231 "o 315)\4+ 105)\2 5 -
6= 16 M g™ T e M 16 (31)

We do not present explicitly complete expressions for mo-
mentspy higher thanpN For further purposes we only ex-
press the leading term q)f“ We see from EQq(25) that\;
<A\y<...<M\,. Therefore, for large enough

pR=am(MANAN, (32

For completeness, we derive also the mean value of the
variablef. As in Ref. 5, we average over all phases the vari-
able fy=In(1+py) and obtain the recursion relatidy ;=

—In(1-R)+fy. We solve this equation with the condition

po=0 (i.e, with f,=0) and obtain

fy=—NIn(1-R)). (33
No simple analytic expressions exist for higher moméfits
For details see Refs. 5,6, and 10.

B. Model Il

In the preceding section, the number of impuritidswas
kept at the same value for each wire in the wire ensemble
(model )). In this section, we leN to fluctuate from wire to
wire according to the distributio(8) while keeping for each
wire the same wire length (model Il). Thus, to obtain the
resistance moments for model 1l we just need to average over
the distribution(3) the moments obtained in the preceding
section. In particular,

<)\%>:NZl )\mgN:e()\m—l)ML:em(m+1)L/§m' (34)

where we define thenth characteristic lengtl§,,, as
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FIG. 1. DistributionP(¢) for various model parameters. 10 0 5 10 150 5 10 15
wire length (um)
*1:’\1'()\—”‘_1)_ (35) FIG. 2. Mean resistancesquares, full linesand typical resis-
m m(m+1) tance(circles, dashed lingsversus the wire length. Squares and

circles are the microscopic model results, full lines and dashed lines
are graphic representation of formulég6) and (38), respectively.
_ 1 Kg is given in Eq.(7). Parameterdl, andR, are varied in such way
=_(e?61-1) (36) that the localization length is the sam&=(2.7 um) for each panel.
2 The accuracy of Eq$36) and(38) deteriorates with increasiny, .

From Egs.(16) and(34) we obtain the mean resistance

and from Eqgs(26) and(34) the second moment

—_ leﬁl—/fz_ Eezufl+ 1 37 In Fig. 1, we present the distributid?(¢) of the variable
P =% 2 3 ¢, where ¢ is the phase entering the right hand side of Eq.
_ (12). The distributionP(¢) can be accumulated either within
The typical resistance is defined @s= expf—1. We average the ensemble of wires with just two randomly positioned
f [Eq. (33)] over the distribution3) and obtain impurities within each wire, or within a single wire into
which many impurities are positioned one by one. Both pro-
pr=expL/é—1, (38 cedures give the same results.
where In accord with the phase randomization hypoth&&#,
for low impurity densityN, (left pane) we see that(¢)
N1t 1) ~const=1/(27). Note that the flat distribution survives for

& t=-NIn(1-R))=NIn 5 (39 rather largeR, values. On the other hand, whiip is large, it

tends to destroy the flatness B ¢) even for very small
is the electron localization length. For comparison, values ofR, (right pane).
R N1 . Results presented in Fig. 1 are con;istent with those in
gl—lle I =N|( 1 _ (40) Fig. 2 where the mean and typical resistances obtained by
1-R, 2 microscopic modeling are presented for various reflection
It is easy to show thatL/¢,, can be expressed as an unam-COefficientsR, and various densitied\, . For low N, our
biguous function oL/ andL/&,. This means that our mod- Microscopic data agree well with our analytlca! re_sults. Note
els exhibit two-parameter scaling. OnlyR¥ is very small, _that this is the case also for_larﬁaia. However, with increas-
both lengths converge to the same limit, ing N, the agreement deteriorates.

~&~(NR)L R<L1. (41 V. MOMENTS OF THE RESISTANCE IN THE LIMIT OF

However, &+ &, for any nonzerdR, . VERY LONG WIRES

In the limit of long wires(N) becomes large and only the
IV. MICROSCOPIC MODELING leading term of the momeniy, becomes important. From

Our derivation of resistance moments relies on the phasEdS-(32) and(34) one easily obtains
randomization hypothesis, i.e., on the averagihd). This o )\w model |

should be justified in the limie>2#x/ke, that means for m (42)

oC
1/N>2m/ke . Now we test the phase randomization hypoth- P eNOm=1)  model Il
esis by microscopic modeling. o .
In our microscopic model we select disorder as discussegrom Eq.(25) it is evident that
in Sec. II, solve Eq(5) by the transfer matrix methad,and In\,~m, ms1. 43)

obtain from Eq.(4) the resistance of a single wire. We repeat
this process for a statistical ensemble of wires typically in-In Fig. 3 the estimaté43) is verified numerically. Using Eq.
volving 1P—1@ samples. (43) and(N)=LN, we can obtain from Eq42)
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bution (1) can be expected to appear already ffalightly
below f ... The same holds also for model Il in whid¥h
fluctuates so that the difference f,,(model II)
—fma{model 1) is of order ofyN. This means that the dis-
tribution P(f) drops to zero in both models ff is large
enough.

However, this sudden drop to zero is not responsible for
the non-Gaussian behavior represented by(&4). To prove
this we now show thap™ is governed by thé values much
smaller thaff . We show that the maximum of the function
P(f)e™ is positioned aff =f,,, wheref,, is much smaller

10
108
108

£ 10*

102

FIG. 3. m dependence of I, for variousR, . thanf .. For the Gaussian distributidi), we find
_____ (mL  modell f. f+mA?2
In p™(L)x (44) —=———=(2m+1). (50)
Le™ model Il. f f

Now we show that the analytical formuldé4) are not  This ratio depends neither dnnor onk . Note that the ratio

consistent with the assumption that the distribut®f) is  fmax/f does not depend dnbut it still depends on ;. In the
Gaussian. To see this clearly, let us averagentiepower of  limit of weak disorder R,—0) we obtain\;~1+ 2R, and

the resistance fmax/f~2/\R— 0. Itis thus evident that,<f . at least in
B the limit of weak disorder.
m:f dfP(f)(e'—1)™ (45) From Eg.(44) we obtain
0 -
m+1
over the Gauss distributiofll). The result can easy be ob- Inp™ (L) _ m+1 (51)
tained analytically as In p™(L) m

— . o m k2A2 for model I, while for the Gaussian distribution
p (L)=k21(—1) o e kPl (40

Inp™ L) m+2

In the limit L/¢>1, relation(46) reduces to (52
m m
202 Inp™(L)
p’“(L)=eXp< 5 +mﬁ- (47)  This proves thaP(f) deviates the Gaussian distribution al-
ready forf from the neighborhood df;. As discussed above,
SinceA?xL, from Eq.(47) we have this region is still far from the distribution tail.

_ In model Il, this deviation from the Gaussian shape is

Inp™(L)om?L. (48 even more pronounced becaupB(L) increases withm

In particular, for weak disordem2=2f_=2L/§ and the lead- much faster than the dependerid@). This means thal(f)

ing term in sum(46) readsece™m* L/E, decreases fof>f much slower than the Gaussian distribu-
If we compare Eq(48) with our analytical result$44) tion. The slower decrease means that the deviation from

we immediately see that relatioié4) do not approach the Gaussian is surely not caused by the cutoff &ff ay.

dependencexm?L predicted by relation(48). Since the

higher moments of the resistance are mainly governed by the VI. DISCUSSION AND CONCLUSIONS

distribution P(f) for f>f, the difference between relations |, conclusion, we have presented two simple models of
(48) and (44) is a proof thatP(f) deviates from the Gauss gjsordered wire which allowed us to express analytically all
distribution in model | as well as in model II. moments of the wire resistance. By means of these analytical
It is important to note that these deviations are not regypressions we have succeeded to prove analytically the
stricted to the distribution tail>f. It is known that the tail non-Gaussian behavior of the distributierf).
of the distributionP(f) is nonuniversal. From Eq11), we Analytical formulas for the resistance moments were ob-
see thapy1<(\;+ \/klz—l)p,\,. Therefore, in model | the tained assuming the phase randomization hypothesis. In Sec.
value off never exceeds the maximum valfjg,, given by 1V, we have proven numerically that this hypothesis is indeed
valid for small impurity densityN,. This means that for

fnax  IN(Ng+ \/le— 1) small enoughN, our results are exact.
T%—m[(?\ﬁ /2] (49 In fact, in a strict mathematical sense there is no single-

parameter scaling in models | and Il, because the len§ths
Due to this reason, in model | the distributi®{f) dropsto  and¢; always differ from each other. The difference between
zero forf>f, . and some deviations from the Gauss distri-them is very small in the limit of small reflection coefficient,
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Coefficients a(m) in Egs. (200 and (21) can be
FIG. 4. The ratio\ ,/exqym(m+1)R] as a function of}, for ~ oObtained as follows. Applying expansion a{b)™

m=1-5. =3"(Ma™ 'b' and considering Eq$18) we obtain from

Eq. (17) the formula

R,<1. Then, numerical experiment is not able to distinguish i) m-2i | o

betweeré andé; and the single-parameter scaling holds to a—— m\/m=2i\[i

good approximation for the bulk of the distribution. PN+17 ;) ]2::0 e (g)( j ) n)
If we accepté= ¢, as in Eq.(41), then relation$36)—(38)

agree with those derived within the scaling theory of > si[A—1 ] m—2i—j m—i—j+n

localization® Note that relatior(41) is exact only if the sec- X (VAf—1 cospy)? 5| XM PN :
ond and higher orders dR, can be neglected. The same

condition assures the equivalence of EB) with Eq. (44). (A1)

Indeed, if we expand , [Eq. (25)] into powers ofR; and  To express Eq(A1) in the form(20), we choose in the triple

neglect all higher powers dR,, we can interpret the ob- sum of Eq.(Al) all terms withm—i—j +n=k. We write all
tained “expansion” as the first two terms of the Taylor ex- these terms as a single temq(m)pf,, where
pansion of the exponential function, i.e.,

int(m/2) m—2i
m
Am=1+m(m+ DR+ O(R)~elM™ DRI (53 adm= 2 > @(k+i+1—m><m—k—j>(2i)
i= j=

We show in Fig. 4 that approximatiof®3) is very good in m— 2i i
the limit of very smallR, and smallm. However, for anyR, X . kit )
we can find suchm so that approximatiot53) is no longer J titj—m
valid. Therefore, relatiori48) does not give the corred, A —1)] o
dependence for higher moments of resistance. This proves x(\/)\f—lcosd;N)Zi(—) APTATL (A2)
that the distributiorP(f) is not Gaussian even for an infini- 2
tesimally smallR, . with ®(x=0)=1 and®(x<0)=0. To derive Eq(A2) we

The main difference between the presented results and, o aiso regarded the limitsstn<i,
those of the scaling theory of localization is that in our mOdelditions K+i+]—
we keep the exadR, dependence of alk,,'s while in the For k=m the function®(m—k—j) gives the only solu-
scaling theory only the linear term iR, is kept. To under- tion j=0 and Eq.(A2) reduces to
stand this difference more clearly, let us go back to the rela-
tion (15). We can approximatg&; as in Eq.(53) and rewrite int(m/2)

which give the con-
m=0 andm—k—j=0.

m . )
Eq. (15 as am(m= >, (Zi))\’l“‘z'(\/)\i—l cospy)?. (A3)
=
Pn+1=Op+put28p py. (54)  Equation(A3) is just binomial expansion of Eq22).

Equation(54) is formally identical with the recursion rela-
tion derived in Refs. 5 and 7. However, in these works it is
assured that the incremedp is proportional to the incre- Here we derive thél dependence Of’_ﬁl In accord with
mentSL of the wire length. The terms of higher orderdp Eq. (23), we assume

can therefore be neglected and approxima{®8) becomes

exact. This is not the case in our model, whépe=R, does p_ﬁz ay(2)\Y+a,(2) A\ +ag(2), (B1)
not depend on the length scale and it is not possible to per-

form the limit SL— 0. As this limit plays a crucial role in the where the parametebs,, a,(2), a;(2), andag(2) have to
derivations of single-parameter scalif§PS in Refs. 5 and be determined whila ; is known. Also known are the coef-
7, it is understandable that our model does not provide uficientsa;(1)=1/2 anday(1)=—1/2[compare Egs(9) and
with the Gauss distribution off predicted by these (16) with Eq.(23) for m=1].

derivations’ Combining Eqs(17), (20), and(21) for m=2 we obtain

APPENDIX B:
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P2 1= an(2)p2+ ay(2) pyt ao(2), (B2)

where ay(2)=N,, «a1(2)=Ny—Nq, and ao(2)=(\,
—1)%/4. Inserting Eqs(16) and (B1) into Eq. (B2) we get

ax(2)A Ay +ay(2)N ) +ag(2)
= ay(2)[ax(2)Ny +a; (2N} +ag(2)]
+ap(2)[al(1)AY+ag(1)]+ap(2). (B3

Now we compare thé\-independent factors aty=1, A,
and\} on both sides of Eq(B3). For \§ we obtain

a9(2) = ap(2)ag(2) + ay(2)ag(1) +ag(2),  (B4)
where the only unknown parameterag(2). Thus, Eq.(B4)
immediately gives
1

a0(2)= 3. (B5)

Analogously, for\)} we obtain
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a1(2)N 1= ay(2)ay(2) + a1(2)a (1), (B6)
so that
1
a,(2)=— 5 (B7)
Eventually, for\} we get
az(2)\ 2= ay(2)az(2), (B8)

which leads to the already knowjsee Eq.(B2)] identity
N2(2)=a@,(2). Inorder to calculat@,(2) we have to insert
the conditionp{'=0 into Eq.(B1). We get

p2=0=a,(2) +a,(2) +ay(2), (B9)
so that
1
ay(2)= 5 (B10)
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