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Coherent resistance of a disordered one-dimensional wire: Expressions for all moments
and evidence for non-Gaussian distribution
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We study coherent electron transport in a one-dimensional wire with disorder modeled as a chain of ran-
domly positioned scatterers. We derive analytical expressions for all statistical moments of the wire resistance
r. By means of these expressions we show analytically that the distributionP( f ) of the variablef 5 ln(1
1r) is not exactly Gaussian even in the limit of weak disorder. In a strict mathematical sense, this conclusion
is found to hold not only for the distribution tails but also for the bulk of the distributionP( f ).
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I. INTRODUCTION

It is known that a coherent electron wave in a disorde
one-dimensional~1D! wire of infinite length is exponentially
localized by an arbitrary weak disorder.1–3 The resistancer
of the 1D wire of lengthL should therefore increase withL
exponentially. In fact, the resistance wildly fluctuates fro
wire to wire in an ensemble of macroscopically identic
wires ~with disorder in each wire being microscopically di
ferent! and what increases exponentially is the mean re
tance and also the ‘‘typical’’ resistance.4,5

It has also become clear that the resistancer is not a
self-averaged quantity.5 In fact, the resistance fluctuations a
so huge that~i! the resistance dispersion exceeds the m
resistance many orders of magnitude,~ii ! the higher mo-
ments of the resistance exceed the mean resistance
more drastically, and~iii ! the mean resistance is much larg
than the typical one. These features are due to the fact
the moments ofr are governed by extremely high resistanc
occurring with an extremely low~but nonzero! probability.

To avoid the absence of self-averaging, the distribut
P( f ) of the variablef 5 ln(11r) was studied instead of th
distribution P(r).5–8 In contrast toP(r), distributionP( f )
is well localized around the mean valuef̄ . It is commonly
accepted that for long enough wires the bulk of the distri
tion P( f ) is described by the Gauss function9

P~ f !5
1

A2pD2
expF2

~ f 2 f̄ !2

2D2 G , ~1!

whereD2[ f 22 f̄ 2 is the variance, while the tails of the dis
tribution P( f ) are allowed to be nonuniversal and depend
the model of disorder. In the limit of weak disorder it
accepted thatD252 f̄ , i.e., that the distribution~1! obeys the
single-parameter scaling. The two-parameter scaling is
cepted to appear for strong disorder, whereD2 is not an
unambiguous function off̄ .10 Interesting to note, the author
of Ref. 11 found two-parameter scaling also for weak dis
der, namely, for the Anderson 1D disorder at certain con
tions.
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In this paper, we study coherent transport in a 1D w
with disorder modeled as a chain of randomly position
scatterers. We derive analytically all statistical moments
the wire resistance. By means of these moments, we prov
the limit of long wires that the distributionP( f ) always de-
viates from the Gauss distribution. The form ofP( f ) for f
. f̄ is concluded to be nonuniversal~dependent on the mode
of disorder! even in the limit of weak disorder. In othe
words, in realistic wires disorder is never weak enough
P( f ) to be exactly Gaussian. The only approximation of o
analysis is the phase randomization hypothesis. We con
its validity by numerical simulations.

In Sec. II, we specify two different model of disordere
1D wire. As a model I we consider the statistical ensemble
wires with the same number of scatterers in each wire
model II we let the number of scatterers to fluctuate fro
wire to wire. In Sec. III, the moments of the wire resistan
are derived for both models analytically assuming the ph
randomization hypothesis. This hypothesis is verified in S
IV by means of numerical simulations. In Sec. V, we pro
that our expressions for the resistance moments are not
sistent with the Gaussian form ofP( f ) even in the limit of
weak disorder. Discussion is given in Sec. VI.

II. MODEL OF DISORDERED 1D WIRE

We consider a 1D wire with disorder represented by r
dom potential

V~x!5(
i 51

N

gd~x2xi !, ~2!

where gd(x2xi) is the d-shaped impurity potential o
strengthg, xi is the i th impurity position selected at random
along the wire, andN is the number of impurities in the wire
Since the positionsxi are mutually independent, the dis
tancesa5xi 112xi between the neighboring impurities fo
low the distributionP(a)5NIexp(2NIa), whereNI is the 1D
density of impurities andNI

21 is the mean distance betwee
the neighboring impurities.

In the following sections we examine two models.
model I, we consider the statistical ensemble of wires withN
©2003 The American Physical Society16-1
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fixed in each wire to its mean value^N&. In model II, we fix
the wire lengthL and we letN to fluctuate from wire to wire
according to the distribution

G~N!5^N&Ne2^N&/N!. ~3!

It is easy to show that this distribution follows from th
distributionP(a). In both models,̂ N&[LNI .

The wire resistancer ~in units h/2e2) is given by the
Landauer formula4

r5
R~«F!

T~«F!
, ~4!

where R and T are the reflection and transmission coef
cients describing the electron tunneling through disorde
the Fermi energy.

Using Eq.~4! we follow a number of previous localizatio
practitioners. Instead of Eq.~4! we could use the two-
terminal resistancer51/T5R/T11, which involves an ex-
tra term~unity on the right-hand side! representing the fun
damental resistance of contacts. The resistance~4! thus
represents the resistance of disorder, directly measur
only by four-probe techniques. The problem is that Eq.~4!
ignores the effect of measurement probes.12,13 We wish to
note that this is not a serious problem in our case. First,
examine the regimeR/T@1, for which the two-terminal re-
sistancer5R/T11 coincides with Eq.~4!. Second, withr
5R/T11 we would arrive at the same conclusions as w
Eq. ~4!. Third, in principle, one can measureR/T indirectly,
by measuring the two-terminal resistance and then subtr
ing unity.

For disorder~2!, bothR andT can be obtained by solving
the tunneling problem

F2
\2

2m

d2

dx2
1V~x!GCk~x!5ECk~x! ~5!

with boundary conditions

Ck~x→0!5eikx1r ke
2 ikx, Ck~x→L !5tke

ikx, ~6!

whereE5\2k2/2m is the electron energy,m is the effective
mass, andr k and tk are the reflection and transmission am
plitudes. The coefficientsR5ur ku2 and T5utku2 need to be
evaluated at the Fermi wave vectork5kF .

The reflection coefficient of a singled barrier is given as
RI5V2/(kF

21V2), whereV5mg/\2. We fix

kF57.93107 m21 ~7!

and m50.067m0, and we parametrize thed barrier byRI .
We ignore the fluctuations ofRI as well as the spread of th
impurity potentials.

III. RESISTANCE MOMENTS

A. Model I

We start with derivation of the mean resistance. Assu
that we know the reflection coefficientRN of a specific con-
figuration ofN randomly positioned impurities. If we add t
16531
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this configuration an extra impurity at positionxN11, we can
expressRN11 through RN and RI . It is useful to express
RN11 in the form4

RN11

12RN11
5

RN1RI22ARNRIcosfN

~12RN!~12RI !
, ~8!

wherefN is the phase specified below. Writing Eq.~8! in
terms of the wire resistance

rN[
RN

12RN
~9!

and in terms of

l1[
11RI

12RI
~10!

we get

rN115l1rN1
l121

2
2A~l1

221!~rN1rN
2 !cosfN .

~11!

The phasefN52kFa1f0, wherea5xN112xN is the inter-
impurity distance, andf0 is the (a-independent! phase due
to the reflection by the obstacles.4,5 Obviously,

r0[0 ~12!

and

r1[
RI

12RI
5

l121

2
. ~13!

Note thatr2 depends onf1 , r3 depends onf2 andf1, etc.,
rN11 thus depends onfN , fN21 , . . . , f2, andf1.

If we assume thata@2p/kF , then fN changes rapidly
with a and fluctuates at random from sample to sample aa
fluctuates. The ensemble average ofrN11 over the interim-
purity distancexN112xN then simplifies to4,5

rN115
1

2pE0

2p

dfNrN11 . ~14!

If we average Eq.~11! over fN , the term}cosfN becomes
zero. If we then average overfN21 , . . . , f2 , f1, we ob-
tain the recursion equation

rN115l1rN1
1

2
~l121!. ~15!

We solve Eq.~15! with initial condition ~12! and obtain the
mean resistance

rN5
1

2
~l1

N21!. ~16!

The higher moments can be obtained in the same w
Themth power of Eq.~11! averaged overfN formally reads
6-2
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rN11
m 5Fl1rN1

l121

2
2A~l1

221!~rN1rN
2 !cosfNGm

.

~17!

If we take into account that14

1

2pE0

2p

df~cosf!2m5
1

22m S 2m

m D ~18!

and

1

2pE0

2p

df~cosf!2m2150, ~19!

we easy see that Eq.~17! takes the form

rN11
m 5 (

k50

m

ak~m!rN
k , ~20!

where coefficientsak(m) are polynomial functions ofl1.
Averaging eachrN

k over fN21, eachrN21
k over fN22, etc.,

we finally obtain the recursion relation

rN11
m 5 (

k50

m

ak~m!rN
k . ~21!

A general expression for coefficientsak(m) is given in Ap-
pendix A, where we also derive

am~m!5@l12Al1
221cosf#m. ~22!

We can also obtain Eq.~22! by comparing the right-hand
sides of Eqs.~17! and~20! for rN→`, where they reduce to

@l12Al1
221cosf#mrN

m andam(m)rN
m , respectively.

We solve Eq.~21! recursively. Suppose that theN depen-
dence ofrN

m can be expressed in the form

rN
m5am~m!lm

N1•••1a1~m!l1
N1a0~m!. ~23!

For m51, Eq.~23! coincides with Eq.~16!. Therefore,l1 in
Eq. ~23! coincides with Eq.~10! and a1(1)51/2, a0(1)5
21/2. Once we knowl1 , a1(1), anda0(1), we cansolve
the problem form52 and determinel2 , a2(2), a1(2), and
a0(2) ~see Appendix B!. Generally, once we determine alllk
and all coefficientsan(k) for 0<n<k<m21, we can insert
expansion~23! into Eq.~21! and compare theN-independent
factors at alllk<m

N . This gives us linear equations

ak~m!lk5(
i 5k

m

a i~m!ak~ i ! ~24!

for all ak(m) with k,m and in addition the identitylm
[am(m), i.e.,

lm5@l12Al1
221cosf#m. ~25!

As a last step we calculate the coefficientam(m) with help of
the initial condition~12!. In Appendix B, this procedure is
demonstrated in detail form52. The result is
16531
rN
2 5

1

6
l2

N2
1

2
l1

N1
1

3
, ~26!

where

l25
1

2
~3l1

221!. ~27!

Parameterslk characterize the exponential increase ofrN
m

with N. Equation~25! expresseslk analytically for arbitrary
k, for example, form51 and 2 it reproduces relations~10!
and ~27!, respectively. We present also

l35
5

2
l1

32
3

2
l1 , ~28!

l45
35

8
l1

42
15

4
l1

21
3

8
, ~29!

l55
63

8
l1

52
35

4
l1

31
15

8
l1 , ~30!

l65
231

16
l1

62
315

16
l1

41
105

16
l1

22
5

16
. ~31!

We do not present explicitly complete expressions for m
mentsrN

m higher thanrN
2 . For further purposes we only ex

press the leading term ofrN
m. We see from Eq.~25! that l1

,l2, . . . ,lm . Therefore, for large enoughN

rN
m'am~m!lm

N}lm
N . ~32!

For completeness, we derive also the mean value of
variablef. As in Ref. 5, we average over all phases the va
able f N5 ln(11rN) and obtain the recursion relationf N115

2 ln(12RI)1fN. We solve this equation with the conditio
r0[0 ~i.e, with f̄ 0[0) and obtain

f N52N ln~12RI !. ~33!

No simple analytic expressions exist for higher momentsf m.
For details see Refs. 5,6, and 10.

B. Model II

In the preceding section, the number of impurities,N, was
kept at the same value for each wire in the wire ensem
~model I!. In this section, we letN to fluctuate from wire to
wire according to the distribution~3! while keeping for each
wire the same wire lengthL ~model II!. Thus, to obtain the
resistance moments for model II we just need to average o
the distribution~3! the moments obtained in the precedin
section. In particular,

^lm
N&5 (

N51

`

lm
NGN5e(lm21)NIL5em(m11)L/jm, ~34!

where we define themth characteristic lengthjm as
6-3
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jm
215

NI~lm21!

m~m11!
. ~35!

From Eqs.~16! and ~34! we obtain the mean resistance

r̄5
1

2
~e2L/j121! ~36!

and from Eqs.~26! and ~34! the second moment

r25
1

6
e6L/j22

1

2
e2L/j11

1

3
. ~37!

The typical resistance is defined asr t5exp f̄21. We average
f̄ @Eq. ~33!# over the distribution~3! and obtain

r t5expL/j21, ~38!

where

j2152NI ln~12RI !5NI lnS l111

2 D ~39!

is the electron localization length. For comparison,

j1
215NI

RI

12RI
5NI S l121

2 D . ~40!

It is easy to show15 that L/jm can be expressed as an una
biguous function ofL/j andL/j1. This means that our mod
els exhibit two-parameter scaling. Only ifRI is very small,
both lengths converge to the same limit,

j'j1'~NIRI !
21, RI!1. ~41!

However,jÞj1 for any nonzeroRI .

IV. MICROSCOPIC MODELING

Our derivation of resistance moments relies on the ph
randomization hypothesis, i.e., on the averaging~14!. This
should be justified in the limita@2p/kF , that means for
1/NI@2p/kF . Now we test the phase randomization hypo
esis by microscopic modeling.

In our microscopic model we select disorder as discus
in Sec. II, solve Eq.~5! by the transfer matrix method,16 and
obtain from Eq.~4! the resistance of a single wire. We repe
this process for a statistical ensemble of wires typically
volving 106–109 samples.

FIG. 1. DistributionP(f) for various model parameters.
16531
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In Fig. 1, we present the distributionP(f) of the variable
f, wheref is the phase entering the right hand side of E
~11!. The distributionP(f) can be accumulated either withi
the ensemble of wires with just two randomly position
impurities within each wire, or within a single wire int
which many impurities are positioned one by one. Both p
cedures give the same results.

In accord with the phase randomization hypothesis~14!,
for low impurity densityNI ~left panel! we see thatP(f)
'const51/(2p). Note that the flat distribution survives fo
rather largeRI values. On the other hand, whenNI is large, it
tends to destroy the flatness ofP(f) even for very small
values ofRI ~right panel!.

Results presented in Fig. 1 are consistent with those
Fig. 2 where the mean and typical resistances obtained
microscopic modeling are presented for various reflect
coefficientsRI and various densitiesNI . For low NI our
microscopic data agree well with our analytical results. N
that this is the case also for largeRI . However, with increas-
ing NI the agreement deteriorates.

V. MOMENTS OF THE RESISTANCE IN THE LIMIT OF
VERY LONG WIRES

In the limit of long wires,̂ N& becomes large and only th
leading term of the momentrN

m becomes important. From
Eqs.~32! and ~34! one easily obtains

rm} H lm
^N& model I

e^N&(lm21) model II.
~42!

From Eq.~25! it is evident that

ln lm'm, m@1. ~43!

In Fig. 3 the estimate~43! is verified numerically. Using Eq
~43! and ^N&[LNI we can obtain from Eq.~42!

FIG. 2. Mean resistance~squares, full lines! and typical resis-
tance~circles, dashed lines! versus the wire lengthL. Squares and
circles are the microscopic model results, full lines and dashed l
are graphic representation of formulas~36! and ~38!, respectively.
kF is given in Eq.~7!. ParametersNI andRI are varied in such way
that the localization length is the same (j52.7 mm) for each panel.
The accuracy of Eqs.~36! and~38! deteriorates with increasingNI .
6-4
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ln rm~L !}H mL model I

Lemh model II.
~44!

Now we show that the analytical formulas~44! are not
consistent with the assumption that the distributionP( f ) is
Gaussian. To see this clearly, let us average themth power of
the resistance

rm~L !5E
0

`

d f P~ f !~ef21!m ~45!

over the Gauss distribution~1!. The result can easy be ob
tained analytically as

rm~L !5 (
k51

m

~21!m2kS m

k D expS k2D2

2
1k f̄ D . ~46!

In the limit L/j@1, relation~46! reduces to

rm~L !5expS m2D2

2
1m f̄D . ~47!

SinceD2}L, from Eq. ~47! we have

ln rm~L !}m2L. ~48!

In particular, for weak disorderD252 f̄ 52L/j and the lead-
ing term in sum~46! reads}em(m11)L/j.

If we compare Eq.~48! with our analytical results~44!,
we immediately see that relations~44! do not approach the
dependence}m2L predicted by relation~48!. Since the
higher moments of the resistance are mainly governed by
distribution P( f ) for f . f̄ , the difference between relation
~48! and ~44! is a proof thatP( f ) deviates from the Gaus
distribution in model I as well as in model II.

It is important to note that these deviations are not
stricted to the distribution tailf @ f̄ . It is known that the tail
of the distributionP( f ) is nonuniversal. From Eq.~11!, we
see thatrN11<(l11Al1

221)rN . Therefore, in model I the
value of f never exceeds the maximum valuef max given by

f max

f̄
'

ln~l11Al1
221!

ln@~l111!/2#
. ~49!

Due to this reason, in model I the distributionP( f ) drops to
zero for f . f max and some deviations from the Gauss dis

FIG. 3. m dependence of lnlm for variousRI .
16531
he
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-

bution ~1! can be expected to appear already forf slightly
below f max. The same holds also for model II in whichN
fluctuates so that the difference f max(model II)
2 f max(model I) is of order ofAN. This means that the dis
tribution P( f ) drops to zero in both models iff is large
enough.

However, this sudden drop to zero is not responsible
the non-Gaussian behavior represented by Eq.~44!. To prove
this we now show thatrm is governed by thef values much
smaller thatf max. We show that the maximum of the functio
P( f )em f is positioned atf 5 f m , where f m is much smaller
than f max. For the Gaussian distribution~1!, we find

f m

f̄
5

f̄ 1mD2

f̄
5~2m11!. ~50!

This ratio depends neither onL nor onl1. Note that the ratio
f max/ f̄ does not depend onL but it still depends onl1. In the
limit of weak disorder (RI→0) we obtainl1'112RI and
f max/ f̄;2/ARI→`. It is thus evident thatf m! f max at least in
the limit of weak disorder.

From Eq.~44! we obtain

ln rm11~L !

ln rm~L !
5

m11

m
~51!

for model I, while for the Gaussian distribution

ln rm11~L !

ln rm~L !
5

m12

m
. ~52!

This proves thatP( f ) deviates the Gaussian distribution a
ready forf from the neighborhood off 1. As discussed above
this region is still far from the distribution tail.

In model II, this deviation from the Gaussian shape
even more pronounced becauserm(L) increases withm
much faster than the dependence~47!. This means thatP( f )
decreases forf . f̄ much slower than the Gaussian distrib
tion. The slower decrease means that the deviation fr
Gaussian is surely not caused by the cutoff atf 5 f max.

VI. DISCUSSION AND CONCLUSIONS

In conclusion, we have presented two simple models
disordered wire which allowed us to express analytically
moments of the wire resistance. By means of these analy
expressions we have succeeded to prove analytically
non-Gaussian behavior of the distributionP( f ).

Analytical formulas for the resistance moments were o
tained assuming the phase randomization hypothesis. In
IV, we have proven numerically that this hypothesis is inde
valid for small impurity densityNI . This means that for
small enoughNI our results are exact.

In fact, in a strict mathematical sense there is no sing
parameter scaling in models I and II, because the lengthj
andj1 always differ from each other. The difference betwe
them is very small in the limit of small reflection coefficien
6-5
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RI!1. Then, numerical experiment is not able to distingu
betweenj andj1 and the single-parameter scaling holds to
good approximation for the bulk of the distribution.

If we acceptj5j1 as in Eq.~41!, then relations~36!–~38!
agree with those derived within the scaling theory
localization.6 Note that relation~41! is exact only if the sec-
ond and higher orders ofRI can be neglected. The sam
condition assures the equivalence of Eq.~48! with Eq. ~44!.
Indeed, if we expandlm @Eq. ~25!# into powers ofRI and
neglect all higher powers ofRI , we can interpret the ob
tained ‘‘expansion’’ as the first two terms of the Taylor e
pansion of the exponential function, i.e.,

lm511m~m11!RI1O~RI
2!'e[m(m11)RI ] . ~53!

We show in Fig. 4 that approximation~53! is very good in
the limit of very smallRI and smallm. However, for anyRI
we can find suchm so that approximation~53! is no longer
valid. Therefore, relation~48! does not give the correctRI
dependence for higher moments of resistance. This pro
that the distributionP( f ) is not Gaussian even for an infin
tesimally smallRI .

The main difference between the presented results
those of the scaling theory of localization is that in our mo
we keep the exactRI dependence of alllm’s while in the
scaling theory only the linear term inRI is kept. To under-
stand this difference more clearly, let us go back to the re
tion ~15!. We can approximatel1 as in Eq.~53! and rewrite
Eq. ~15! as

rN115dr1rN12dr rN. ~54!

Equation~54! is formally identical with the recursion rela
tion derived in Refs. 5 and 7. However, in these works it
assured that the incrementdr is proportional to the incre-
mentdL of the wire length. The terms of higher order indr
can therefore be neglected and approximation~53! becomes
exact. This is not the case in our model, wheredr5RI does
not depend on the length scale and it is not possible to
form the limit dL→0. As this limit plays a crucial role in the
derivations of single-parameter scaling~SPS! in Refs. 5 and
7, it is understandable that our model does not provide
with the Gauss distribution off predicted by these
derivations.17

FIG. 4. The ratiolm /exp@m(m11)RI# as a function ofRI for
m51 –5.
16531
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APPENDIX A:

Coefficients ak(m) in Eqs. ~20! and ~21! can be
obtained as follows. Applying expansion (a1b)m

5( i 50
m ( i

m)am2 ibi and considering Eqs.~18! we obtain from
Eq. ~17! the formula

rN11
m 5 (

i 50

int(m/2)

(
j 50

m22i

(
n50

i S m

2i D S m22i

j D S i

nD
3~Al1

221 cosfN!2i S l121

2 D j

3l1
m22i 2 jrN

m2 i 2 j 1n .

~A1!

To express Eq.~A1! in the form~20!, we choose in the triple
sum of Eq.~A1! all terms withm2 i 2 j 1n5k. We write all
these terms as a single termak(m)rN

k , where

ak~m!5 (
i 50

int(m/2)

(
j 50

m22i

Q~k1 i 1 j 2m!Q~m2k2 j !S m

2i D
3S m22i

j D S i

k1 i 1 j 2mD
3~Al1

221cosfN!2iS l121

2
D j

l1
m22i 2 j , ~A2!

with Q(x>0)51 andQ(x,0)50. To derive Eq.~A2! we
have also regarded the limits 0<n< i , which give the con-
ditions k1 i 1 j 2m>0 andm2k2 j >0.

For k5m the functionQ(m2k2 j ) gives the only solu-
tion j 50 and Eq.~A2! reduces to

am~m!5 (
i 50

int(m/2) S m

2i D l1
m22i~Al1

221 cosfN!2i . ~A3!

Equation~A3! is just binomial expansion of Eq.~22!.

APPENDIX B:

Here we derive theN dependence ofrN
2 . In accord with

Eq. ~23!, we assume

rN
2 5a2~2!l2

N1a1~2! l1
N1a0~2!, ~B1!

where the parametersl2 , a2(2), a1(2), anda0(2) have to
be determined whilel1 is known. Also known are the coef
ficientsa1(1)51/2 anda0(1)521/2 @compare Eqs.~9! and
~16! with Eq. ~23! for m51].

Combining Eqs.~17!, ~20!, and~21! for m52 we obtain
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rN11
2 5a2~2!rN

2 1a1~2!rN1a0~2!, ~B2!

where a2(2)5l2 , a1(2)5l22l1, and a0(2)5(l1
21)2/4. Inserting Eqs.~16! and ~B1! into Eq. ~B2! we get

a2~2!l2l2
N1a1~2!l1l1

N1a0~2!

5a2~2!@a2~2!l2
N1a1~2!l1

N1a0~2!#

1a1~2!@a1~1!l1
N1a0~1!#1a0~2!. ~B3!

Now we compare theN-independent factors atl0
N[1, l1

N ,
andl2

N on both sides of Eq.~B3!. For l0
N we obtain

a0~2!5a2~2!a0~2!1a1~2!a0~1!1a0~2!, ~B4!

where the only unknown parameter isa0(2). Thus, Eq.~B4!
immediately gives

a0~2!5
1

3
. ~B5!

Analogously, forl1
N we obtain
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G. Monsiváis, Phys. Rev. B35, 2144~1987!.

17For RI}dL, relation~53! becomes exact in the limitdL→0.
6-7


