65 research outputs found

    eXplainable Artificial Intelligence (XAI) in aging clock models

    Full text link
    eXplainable Artificial Intelligence (XAI) is a rapidly progressing field of machine learning, aiming to unravel the predictions of complex models. XAI is especially required in sensitive applications, e.g. in health care, when diagnosis, recommendations and treatment choices might rely on the decisions made by artificial intelligence systems. AI approaches have become widely used in aging research as well, in particular, in developing biological clock models and identifying biomarkers of aging and age-related diseases. However, the potential of XAI here awaits to be fully appreciated. We discuss the application of XAI for developing the "aging clocks" and present a comprehensive analysis of the literature categorized by the focus on particular physiological systems

    The Neuronal Overexpression of Gclc in Drosophila melanogaster Induces Life Extension With Longevity-Associated Transcriptomic Changes in the Thorax

    Get PDF
    Some effects of aging in animals are tissue-specific. In D. melanogaster neuronal overexpression of Gclc increases lifespan and improves certain physiological parameters associated with health benefits such as locomotor activity, circadian rhythmicity, and stress resistance. Our previous transcriptomic analyses of Drosophila heads, primarily composed of neuronal tissue, revealed significant changes in expression levels of genes involved in aging-related signaling pathways (Jak-STAT, MAPK, FOXO, Notch, mTOR, TGF-beta), translation, protein processing in endoplasmic reticulum, proteasomal degradation, glycolysis, oxidative phosphorylation, apoptosis, regulation of circadian rhythms, differentiation of neurons, synaptic plasticity, and transmission. Considering that various tissues age differently and age-related gene expression changes are tissue-specific, we investigated the effects of neuronal Gclc overexpression on gene expression levels in the imago thorax, which is primarily composed of muscles. A total of 58 genes were found to be differentially expressed between thoraces of control and Gclc overexpressing flies. The Gclc level demonstrated associations with expression of genes involved in the circadian rhythmicity, the genes in categories related to the muscle system process and the downregulation of genes involved in proteolysis. Most of the functional categories altered by Gclc overexpression related to metabolism including Drug metabolism, Metabolism of xenobiotics by cytochrome P450, Glutathione metabolism, Starch and sucrose metabolism, Citrate cycle (TCA cycle), One carbon pool by folate. Thus, the transcriptomic changes caused by neuron-specific Gclc overexpression in the thorax were less pronounced than in the head and affected pathways also differed from previous results. Although these pathways don't belong to the canonical longevity pathways, we suggest that they could participate in the delay of aging of Gclc overexpressing flies

    Vive la radiorésistance!: converging research in radiobiology and biogerontology to enhance human radioresistance for deep space exploration and colonization.

    Get PDF
    While many efforts have been made to pave the way toward human space colonization, little consideration has been given to the methods of protecting spacefarers against harsh cosmic and local radioactive environments and the high costs associated with protection from the deleterious physiological effects of exposure to high-Linear energy transfer (high-LET) radiation. Herein, we lay the foundations of a roadmap toward enhancing human radioresistance for the purposes of deep space colonization and exploration. We outline future research directions toward the goal of enhancing human radioresistance, including upregulation of endogenous repair and radioprotective mechanisms, possible leeways into gene therapy in order to enhance radioresistance via the translation of exogenous and engineered DNA repair and radioprotective mechanisms, the substitution of organic molecules with fortified isoforms, and methods of slowing metabolic activity while preserving cognitive function. We conclude by presenting the known associations between radioresistance and longevity, and articulating the position that enhancing human radioresistance is likely to extend the healthspan of human spacefarers as well

    Enhanced Longevity by Ibuprofen, Conserved in Multiple Species, Occurs in Yeast through Inhibition of Tryptophan Import

    Get PDF
    The common non-steroidal anti-inflammatory drug ibuprofen has been associated with a reduced risk of some age-related pathologies. However, a general pro-longevity role for ibuprofen and its mechanistic basis remains unclear. Here we show that ibuprofen increased the lifespan of Saccharomyces cerevisiae, Caenorhabditis elegans and Drosophila melanogaster, indicative of conserved eukaryotic longevity effects. Studies in yeast indicate that ibuprofen destabilizes the Tat2p permease and inhibits tryptophan uptake. Loss of Tat2p increased replicative lifespan (RLS), but ibuprofen did not increase RLS when Tat2p was stabilized or in an already long-lived strain background impaired for aromatic amino acid uptake. Concomitant with lifespan extension, ibuprofen moderately reduced cell size at birth, leading to a delay in the G1 phase of the cell cycle. Similar changes in cell cycle progression were evident in a large dataset of replicatively long-lived yeast deletion strains. These results point to fundamental cell cycle signatures linked with longevity, implicate aromatic amino acid import in aging and identify a largely safe drug that extends lifespan across different kingdoms of life.The open access fee for this work was funded through the Texas A&M University Open Access to Knowledge (OAK) Fund

    58 Agricultural Education and Extension

    No full text
    Ecosystem Health and Sustainable Agricultur
    corecore