1,535 research outputs found

    Levels of Information Processing in a Fitts law task (LIPFitts)

    Get PDF
    State-of-the-art flight technology has restructured the task of human operators, decreasing the need for physical and sensory resources, and increasing the quantity of cognitive effort required, changing it qualitatively. Recent technological advances have the most potential for impacting a pilot in two areas: performance and mental workload. In an environment in which timing is critical, additional cognitive processing can cause performance decrements, and increase a pilot's perception of the mental workload involved. The effects of stimulus processing demands on motor response performance and subjective mental workload are examined, using different combinations of response selection and target acquisition tasks. The information processing demands of the response selection were varied (e.g., Sternberg memory set tasks, math equations, pattern matching), as was the difficulty of the response execution. Response latency as well as subjective workload ratings varied in accordance with the cognitive complexity of the task. Movement times varied according to the difficulty of the response execution task. Implications in terms of real-world flight situations are discussed

    An Analysis of the Federal Acquisition Streamlining Act and the Clinger-Cohen Act and Their Effect on Cost Overruns in Department of Defense Contracts

    Get PDF
    This thesis examines the impact of the Federal Acquisition Streamlining Act (FASA) of 1994 and the Clinger-Cohen Act on cost overruns in Department of Defense (DoD) contracts. Many officials believe that we must change the way we do business to meet the new post-Cold War national security challenges Changing the way we do business means reforming the acquisition process to deliver weapons systems faster and cheaper. The FASA and the Clinger-Cohen Act made more changes to the acquisition process than any other policy had in the ten years preceding. This research effort studied 220 contracts completed between December 31, 1993 and December 31, 2001 to determine if cost overruns on contracts completed before the implementation of the FASA and the Clinger-Cohen Act were different than cost overruns on contracts completed after the implementation of the FASA and the Clinger- Cohen Act. The contracts were also subdivided to determine if the results were sensitive to acquisition lifecycle phase, branch of service, or contract type. The results indicate that cost overruns decreased on completed contracts after the implementation of the legislation. The results were sensitive to the branch of service responsible, Air Force contracts experienced no change in cost overruns after the implementation of the FASA and the Clinger-Cohen Act, while cost overruns in Army and Navy contracts decreased. The results were not sensitive to lifecycle phase or contract type

    Employer Reports of Skills Gaps in the Workforce

    Get PDF
    Skills gaps in the workforce are a common conversation in the current value proposition of higher education. Colleges are expected to help students prepare for a world-class workforce while maintaining the integrity of the academic mission. Employers have similar but different opinions on the preparation of college graduates. This exploratory study took an in-depth look at the perceptions of sixteen employers in a region of the Midwest on questions about the perception of hiring managers about the skills gap in the workforce. Questions focused on work readiness, common challenges, and opportunities that exist to combat these hiring challenges. The themes that emerged from the study provide a foundation for future research with employers and conversations on skills gap in addition to providing guidance to colleges. Five themes emerged from the study: corporate strategy, role of the university, experience, applicant skills, and career management. Recommendations include developing formal relationships between the employer and the university, supporting lifelong learning for new hires, hiring based on the potential for learning and offering more internships. The participants presented ideas and suggestions for best practices and noted how to best connect students to opportunities. Advisor: Marilyn Grad

    Crystal Structures of Influenza A Virus Matrix Protein M1: Variations on a Theme

    Get PDF
    Matrix protein 1 (M1) of the influenza A virus plays multiple roles in virion assembly and infection. Interest in the pH dependence of M1\u27s multiple functions led us to study the effect of subtle pH changes on M1 structure, resulting in the elucidation of a unique low-pH crystal structure of the N1-165-domain of A/WSN/33 (H1N1) M1 that has never been reported. Although the 2.2 Å crystal structure of M1 N-terminus shows a dimer with the two monomers interacting in a face-to-face fashion at low pH as observed earlier, a 44° rotation of the second monomer has led to a significantly different dimer interface that possibly affects dimer stability. More importantly, while one of the monomers is fully defined, the N-terminal half of the second monomer shows considerable disorder that appears inherent in the protein and is potentially physiologically relevant. Such disorder has not been observed in any other previously reported structure at either low or high pH conditions, despite similar crystallization pH conditions. By comparing our novel N1-165-domain structure with other low-pH or neutral-pH M1 structures, it appears that M1 can energetically access different monomer and dimer conformations, as well as oligomeric states, with varying degree of similarities. The study reported here provides further insights into M1 oligomerization that may be essential for viral propagation and infectivity

    Simultaneous Robotic Manipulation and Functional Magnetic Resonance Imaging: Feasibility in Children with Autism Spectrum Disorders

    Get PDF
    An unanswered question concerning the neural basis of autism spectrum disorders (ASD) is how sensorimotor deficits in individuals with ASD are related to abnormalities of brain function. We previously described a robotic joystick and video game system that allows us to record functional magnetic resonance images (FMRI) while adult humans make goal- directed wrist motions. We anticipated several challenges in extending this approach to studying goal-directed behaviors in children with ASD and in typically developing (TYP) children. In particular we were concerned that children with autism may express increased levels of anxiety as compared to typically developing children due to the loud sounds and small enclosed space of the MRI scanner. We also were concerned that both groups of children might become restless during testing, leading to an unacceptable amount of head movement. Here we performed a pilot study evaluating the extent to which autistic and typically developing children exhibit anxiety during our experimental protocol as well as their ability to comply with task instructions. Our experimental controls were successful in minimizing group differences in drop-out due to anxiety. Kinematic performance and head motion also were similar across groups. Both groups of children engaged cortical regions (frontal, parietal, temporal, occipital) while making goal- directed movements. In addition, the ASD group exhibited task- related correlations in subcortical regions (cerebellum, thalamus), whereas correlations in the TYP group did not reach statistical significance in subcortical regions. Four distinct regions in frontal cortex showed a significant group difference such that TYP children exhibited positive correlations between the hemodynamic response and movement, whereas children with ASD exhibited negative correlations. These findings demonstrate feasibility of simultaneous application of robotic manipulation and functional imaging to study goal-directed motor behaviors in autistic and typically developing children. The findings also suggest the presence of marked changes in neural activation during a sensorimotor task requiring goal- directed movement

    N2O release from agro-biofuel production negates global warming reduction by replacing fossil fuels

    Get PDF
    The relationship, on a global basis, between the amount of N fixed by chemical, biological or atmospheric processes entering the terrestrial biosphere, and the total emission of nitrous oxide (N<sub>2</sub>O), has been re-examined, using known global atmospheric removal rates and concentration growth of N<sub>2</sub>O as a proxy for overall emissions. For both the pre-industrial period and in recent times, after taking into account the large-scale changes in synthetic N fertiliser production, we find an overall conversion factor of 3&ndash;5% from newly fixed N to N<sub>2</sub>O-N. We assume the same factor to be valid for biofuel production systems. It is covered only in part by the default conversion factor for "direct" emissions from agricultural crop lands (1%) estimated by IPCC (2006), and the default factors for the "indirect" emissions (following volatilization/deposition and leaching/runoff of N: 0.35&ndash;0.45%) cited therein. However, as we show in the paper, when additional emissions included in the IPCC methodology, e.g. those from livestock production, are included, the total may not be inconsistent with that given by our "top-down" method. When the extra N<sub>2</sub>O emission from biofuel production is calculated in "CO<sub>2</sub>-equivalent" global warming terms, and compared with the quasi-cooling effect of "saving" emissions of fossil fuel derived CO<sub>2</sub>, the outcome is that the production of commonly used biofuels, such as biodiesel from rapeseed and bioethanol from corn (maize), depending on N fertilizer uptake efficiency by the plants, can contribute as much or more to global warming by N<sub>2</sub>O emissions than cooling by fossil fuel savings. Crops with less N demand, such as grasses and woody coppice species, have more favourable climate impacts. This analysis only considers the conversion of biomass to biofuel. It does not take into account the use of fossil fuel on the farms and for fertilizer and pesticide production, but it also neglects the production of useful co-products. Both factors partially compensate each other. This needs to be analyzed in a full life cycle assessment

    Autonomous, Context-Sensitive, Task Management Systems and Decision Support Tools II: Contextual Constraints and Information Sources

    Get PDF
    Recent advances in artificial intelligence, machine learning, data mining and sensor technology have resulted in the availability of a vast amount of digital data and information and the development of advanced automated reasoners. This creates the opportunity for the development of a robust dynamic task manager and decision support tool that is context sensitive and integrates information from a wide array of on-board and off aircraft sourcesa tool that monitors systems and the overall flight situation, anticipates information needs, prioritizes tasks appropriately, keeps pilots well informed, and is nimble and able to adapt to changing circumstances. This is the second of two companion reports exploring issues associated with autonomous, context-sensitive, task management and decision support tools. In the first report, we explored fundamental issues associated with the development of such a system. In this report, we extend this work to focus on two critical aspects of these systems: 1) the constraints and conditions that drive the dynamic prioritization and presentation of data and information to the pilots, and 2) specific data and information to be accessed, monitored, integrated, and displayed in such a system

    Autonomous, Context-Sensitive, Task Management Systems and Decision Support Tools I: Human-Autonomy Teaming Fundamentals and State of the Art

    Get PDF
    Recent advances in artificial intelligence, machine learning, data mining and extraction, and especially in sensor technology have resulted in the availability of a vast amount of digital data and information and the development of advanced automated reasoners. This creates the opportunity for the development of a robust dynamic task manager and decision support tool that is context sensitive and integrates information from a wide array of on-board and off aircraft sourcesa tool that monitors systems and the overall flight situation, anticipates information needs, prioritizes tasks appropriately, keeps pilots well informed, and is nimble and able to adapt to changing circumstances. This is the first of two companion reports exploring issues associated with autonomous, context-sensitive, task management and decision support tools. In the first report, we explore fundamental issues associated with the development of an integrated, dynamic, flight information and automation management system. We discuss human factors issues pertaining to information automation and review the current state of the art of pilot information management and decision support tools. We also explore how effective human-human team behavior and expectations could be extended to teams involving humans and automation or autonomous systems
    • …
    corecore