221 research outputs found
Spatial and temporal variation in malaria transmission in a low endemicity area in northern Tanzania
BACKGROUND: Spatial and longitudinal monitoring of transmission intensity will allow better targeting of malaria interventions. In this study, data on meteorological, demographic, entomological and parasitological data over the course of a year was collected to describe malaria epidemiology in a single village of low transmission intensity. METHODS: Entomological monitoring of malaria vectors was performed by weekly light trap catches in 10 houses. Each house in the village of Msitu wa Tembo, Lower Moshi, was mapped and censused. Malaria cases identified through passive case detection at the local health centre were mapped by residence using GIS software and the incidence of cases by season and distance to the main breeding site was calculated. RESULTS: The principle vector was Anopheles arabiensis and peak mosquito numbers followed peaks in recent rainfall. The entomological inoculation rate estimated was 3.4 (95% CI 0.7–9.9) infectious bites per person per year. The majority of malaria cases (85/130) occurred during the rainy season (χ(2 )= 62,3, p < 0.001). Living further away from the river (OR 0.96, CI 0.92–0.998, p = 0.04 every 50 m) and use of anti-insect window screens (OR 0.65, CI 0.44–0.94, p = 0.023) were independent protective factors for the risk of malaria infection. Children aged 1–5 years and 5–15 years were at greater risk of clinical episodes (OR 2.36, CI 1.41–3.97, p = 0.001 and OR 3.68, CI 2.42–5.61, p < 0.001 respectively). CONCLUSION: These data show that local malaria transmission is restricted to the rainy season and strongly associated with proximity to the river. Transmission reducing interventions should, therefore, be timed before the rain-associated increase in mosquito numbers and target households located near the river
10 Years of Environmental Change on the Slopes of Mount Kilimanjaro and Its Associated Shift in Malaria Vector Distributions.
INTRODUCTION: Malaria prevalence has declined in the Kilimanjaro region of Tanzania over the past 10 years, particularly at lower altitudes. While this decline has been related to the scale-up of long-lasting insecticidal nets to achieve universal coverage targets, it has also been attributed to changes in environmental factors that are important for enabling and sustaining malaria transmission. OBJECTIVES: Herein, we apply spatial analytical approaches to investigate the impact of environmental and demographic changes, including changes in temperature, precipitation, land cover, and population density, on the range of the major malaria vector species Anopheles arabiensis in two districts of Tanzania, situated on the southern slope of Mount Kilimanjaro. These models are used to identify environmental changes that have occurred over a 10-year period and highlight the implications for malaria transmission in this highland region. METHODS: Entomological data were collected from the Hai and Lower Moshi districts of Tanzania in 2001-2004 and 2014-2015. Vector occurrence data were applied alongside satellite remote sensing indices of climate and land cover, and gridded population data, to develop species distribution models for An. arabiensis for the 2004 and 2014 periods using maximum entropy. Models were compared to assess the relative contribution of different environmental and demographic factors to observed trends in vector species distribution in lowland and highland areas. RESULTS: Changes in land cover were observed in addition to increased population densities, increased warm season temperature, and decreased wetness at low altitudes. The predicted area and extent of suitable habitat for An. arabiensis declined across the study area over the 10-year period, with notable contraction at lower altitudes, while species range in higher altitude zones expanded. Importantly, deforestation and warmer temperatures at higher altitudes may have created stable areas of suitable vector habitat in the highlands capable of sustaining malaria transmission. CONCLUSION: We show that environmental changes have had an important influence on the distribution of malaria vector species in a highland area of northern Tanzania. Highland areas may be at continued risk for sporadic malaria outbreaks despite the overall range contraction of principal vector species at lower altitudes, where malaria transmission remains at low intensity
Prevalence of dengue and chikungunya virus infections in north-eastern Tanzania:a cross sectional study among participants presenting with malaria-like symptoms
BACKGROUND: In spite of increasing reports of dengue and chikungunya activity in Tanzania, limited research has been done to document the general epidemiology of dengue and chikungunya in the country. This study aimed at determining the sero-prevalence and prevalence of acute infections of dengue and chikungunya virus among participants presenting with malaria-like symptoms (fever, headache, rash, vomit, and joint pain) in three communities with distinct ecologies of north-eastern Tanzania. METHODS: Cross sectional studies were conducted among 1100 participants (aged 2–70 years) presenting with malaria-like symptoms at health facilities at Bondo dispensary (Bondo, Tanga), Hai hospital (Hai, Kilimanjaro) and TPC hospital (Lower Moshi). Participants who were malaria negative using rapid diagnostic tests (mRDT) were screened for sero-positivity towards dengue and chikungunya Immunoglobulin G and M (IgG and IgM) using ELISA-based kits. Participants with specific symptoms defined as probable dengue and/or chikungunya by WHO (fever and various combinations of symptoms such as headache, rash, nausea/vomit, and joint pain) were further screened for acute dengue and chikungunya infections by PCR. RESULTS: Out of a total of 1100 participants recruited, 91.2 % (n = 1003) were malaria negative by mRDT. Out of these, few of the participants (<5 %) were dengue IgM or IgG positive. A total of 381 participants had fever out of which 8.7 % (33/381) met the defined criteria for probable dengue, though none (0 %) was confirmed to be acute cases. Chikungunya IgM positives among febrile participants were 12.9 % (49/381) while IgG positives were at 3.7 % (14/381). A total of 74.2 % (283/381) participants met the defined criteria for probable chikungunya and 4.2 % (11/263) were confirmed by PCR to be acute chikungunya cases. Further analyses revealed that headache and joint pain were significantly associated with chikungunya IgM seropositivity. CONCLUSION: In north-eastern Tanzania, mainly chikungunya virus appears to be actively circulating in the population. Continuous surveillance is needed to determine the contribution of viral infections of fever cases. A possible establishment of arboviral vector preventive control measures and better diagnosis of pathogens to avoid over-treatment of other diseases should be considered. ELECTRONIC SUPPLEMENTARY MATERIAL: The online version of this article (doi:10.1186/s12879-016-1511-5) contains supplementary material, which is available to authorized users
Evaluation of a national universal coverage campaign of long-lasting insecticidal nets in a rural district in north-west Tanzania.
\ud
\ud
Insecticide-treated nets (ITN) are one of the most effective measures for preventing malaria. Mass distribution campaigns are being used to rapidly increase net coverage in at-risk populations. This study had two purposes: to evaluate the impact of a universal coverage campaign (UCC) of long-lasting insecticidal nets (LLINs) on LLIN ownership and usage, and to identify factors that may be associated with inadequate coverage. In 2011 two cross-sectional household surveys were conducted in 50 clusters in Muleba district, north-west Tanzania. Prior to the UCC 3,246 households were surveyed and 2,499 afterwards. Data on bed net ownership and usage, demographics of household members and household characteristics including factors related to socio-economic status were gathered, using an adapted version of the standard Malaria Indicator Survey. Specific questions relating to the UCC process were asked. The proportion of households with at least one ITN increased from 62.6% (95% Confidence Interval (CI) = 60.9-64.2) before the UCC to 90.8% (95% CI = 89.0-92.3) afterwards. ITN usage in all residents rose from 40.8% to 55.7%. After the UCC 58.4% (95% CI = 54.7-62.1) of households had sufficient ITNs to cover all their sleeping places. Households with children under five years (OR = 2.4, 95% CI = 1.9-2.9) and small households (OR = 1.9, 95% CI = 1.5-2.4) were most likely to reach universal coverage. Poverty was not associated with net coverage. Eighty percent of households surveyed received LLINs from the campaign. The UCC in Muleba district of Tanzania was equitable, greatly improving LLIN ownership and, more moderately, usage. However, the goal of universal coverage in terms of the adequate provision of nets was not achieved. Multiple, continuous delivery systems and education activities are required to maintain and improve bed net ownership and usage.\ud
\u
Mapping clusters of chikungunya and dengue transmission in northern Tanzania using disease exposure and vector data
Background: Dengue and chikungunya are mosquito-borne viral diseases that are of public health importance throughout the tropical and subtropical regions of the world. Seasonal variations in transmission of these viruses have been suggested owing to the ecology of their mosquito vectors. However, little is known about the epidemiology of the diseases Tanzania. To address this gap, seasonal community-based cross-sectional surveys were undertaken to identify potential clusters of transmission in Hai district in northern Tanzania.Methods: Epidemiological and entomological data from two cross-sectional surveys were used to examine the spatial pattern of dengue and chikungunya transmission. Six villages namely, Boma Ng’ombe, Magadini, Rundugai, Nshara and Kware were involved in the study. Serological measures of dengue and chikungunya virus infections were derived using enzyme-linked immunosorbent assays, and all participants were geo-referenced to the household level using a global positioning system. Potential clusters of individual exposed to dengue and chikungunya virus , as well as clusters of Aedes mosquitoes in the wet and dry seasons were detected using SaTScan. All significant clusters (with p≤0.05) were mapped using ArcGIS.Results: A large, widely dispersed cluster of chikungunya exposed individuals was detected spanning Rundugai and parts of Magadini villages (RR = 2.58, p= 0.01), while no significant clustering was observed in the dry season. Spatial clusters of Aedes aegypti were detected in Rundugai in both the wet and dry seasons (RR = 2.56, p< 0.001 and RR = 2.24, p=0.05, respectively). In the dry season a small cluster was also detected in Kware (RR = 2.25, p=0.05). No significant clusters of dengue were detected in both seasons.Conclusion: Clusters of chikungunya-exposed individuals and Aedes mosquitoes indicate on-going transmission of chikungunya virus in Hai district of northern Tanzania
A Systematic Review of Mosquito Coils and Passive Emanators: Defining Recommendations for Spatial Repellency Testing Methodologies.
Mosquito coils, vaporizer mats and emanators confer protection against mosquito bites through the spatial action of emanated vapor or airborne pyrethroid particles. These products dominate the pest control market; therefore, it is vital to characterize mosquito responses elicited by the chemical actives and their potential for disease prevention. The aim of this review was to determine effects of mosquito coils and emanators on mosquito responses that reduce human-vector contact and to propose scientific consensus on terminologies and methodologies used for evaluation of product formats that could contain spatial chemical actives, including indoor residual spraying (IRS), long lasting insecticide treated nets (LLINs) and insecticide treated materials (ITMs). PubMed, (National Centre for Biotechnology Information (NCBI), U.S. National Library of Medicine, NIH), MEDLINE, LILAC, Cochrane library, IBECS and Armed Forces Pest Management Board Literature Retrieval System search engines were used to identify studies of pyrethroid based coils and emanators with key-words "Mosquito coils" "Mosquito emanators" and "Spatial repellents". It was concluded that there is need to improve statistical reporting of studies, and reach consensus in the methodologies and terminologies used through standardized testing guidelines. Despite differing evaluation methodologies, data showed that coils and emanators induce mortality, deterrence, repellency as well as reduce the ability of mosquitoes to feed on humans. Available data on efficacy outdoors, dose-response relationships and effective distance of coils and emanators is inadequate for developing a target product profile (TPP), which will be required for such chemicals before optimized implementation can occur for maximum benefits in disease control
Mosquito Abundance, Bed net Coverage and Other Factors Associated with Variations in Sporozoite Infectivity Rates in Four Villages of Rural Tanzania.
Entomological surveys are of great importance in decision-making processes regarding malaria control strategies because they help to identify associations between vector abundance both species-specific ecology and disease intervention factors associated with malaria transmission. Sporozoite infectivity rates, mosquito host blood meal source, bed net coverage and mosquito abundance were assessed in this study. A longitudinal survey was conducted in four villages in two regions of Tanzania. Malaria vectors were sampled using the CDC light trap and pyrethrum spray catch methods. In each village, ten paired houses were selected for mosquitoes sampling. Sampling was done in fortnight case and study was undertaken for six months in both Kilimanjaro (Northern Tanzania) and Dodoma (Central Tanzania) regions. A total of 6,883 mosquitoes were collected including: 5,628 (81.8%) Anopheles arabiensis, 1,100 (15.9%) Culex quinquefasciatus, 89 (1.4%) Anopheles funestus, and 66 (0.9%) Anopheles gambiae s.s. Of the total mosquitoes collected 3,861 were captured by CDC light trap and 3,022 by the pyrethrum spray catch method. The overall light trap: spray catch ratio was 1.3:1. Mosquito densities per room were 96.5 and 75.5 for light trap and pyrethrum spray catch respectively. Mosquito infectivity rates between villages that have high proportion of bed net owners and those without bed nets was significant (P < 0.001) and there was a significant difference in sporozoite rates between households with and without bed nets in these four villages (P < 0.001). Malaria remains a major problem in the study areas characterized as low transmission sites. Further studies are required to establish the annual entomological inoculation rates and to observe the annual parasitaemia dynamics in these communities. Outdoor mosquitoes collection should also be considered
Change in Composition of the Anopheles Gambiae Complex and its Possible Implications for the Transmission of Malaria and Lymphatic Filariasis in North-Eastern Tanzania.
A dramatic decline in the incidence of malaria due to Plasmodium falciparum infection in coastal East Africa has recently been reported to be paralleled (or even preceded) by an equally dramatic decline in malaria vector density, despite absence of organized vector control. As part of investigations into possible causes for the change in vector population density, the present study analysed the Anopheles gambiae s.l. sibling species composition in north-eastern Tanzania. The study was in two parts. The first compared current species complex composition in freshly caught An. gambiae s.l. complex from three villages to the composition reported from previous studies carried out 2-4 decades ago in the same villages. The second took advantage of a sample of archived dried An. gambiae s.l. complex specimens collected regularly from a fourth study village since 2005. Both fresh and archived dried specimens were identified to sibling species of the An. gambiae s.l. complex by PCR. The same specimens were moreover examined for Plasmodium falciparum and Wuchereria bancrofti infection by PCR. As in earlier studies, An. gambiae s.s., Anopheles merus and Anopheles arabiensis were identified as sibling species found in the area. However, both study parts indicated a marked change in sibling species composition over time. From being by far the most abundant in the past An. gambiae s.s. was now the most rare, whereas An. arabiensis had changed from being the most rare to the most common. P. falciparum infection was rarely detected in the examined specimens (and only in An. arabiensis) whereas W. bancrofti infection was prevalent and detected in all three sibling species. The study indicates that a major shift in An. gambiae s.l. sibling species composition has taken place in the study area in recent years. Combined with the earlier reported decline in overall malaria vector density, the study suggests that this decline has been most marked for An. gambiae s.s., and least for An. arabiensis, leading to current predominance of the latter. Due to differences in biology and vectorial capacity of the An. gambiae s.l. complex the change in sibling species composition will have important implications for the epidemiology and control of malaria and lymphatic filariasis in the study area
Growth, immune and viral responses in HIV infected African children receiving highly active antiretroviral therapy: a prospective cohort study
<p>Abstract</p> <p>Background</p> <p>Scale up of paediatric antiretroviral therapy in resource limited settings continues despite limited access to routine laboratory monitoring. We documented the weight and height responses in HIV infected Ugandan children on highly active antiretroviral therapy and determined clinical factors associated with successful treatment outcomes.</p> <p>Methods</p> <p>A prospective cohort of HIV infected children were initiated on HAART and followed for 48 weeks. Body mass index for age z scores(BAZ), weight and height-for-age z scores (WAZ & HAZ) were calculated: CD4 cell % and HIV-1 RNA were measured at baseline and every 12 weeks. Treatment outcomes were classified according to; both virological and immunological success (VS/IS), virological failure and immunological success (VF/IS). virological success and immunological failure (VS/IF) and both virological and immunological failure (VF/IF).</p> <p>Results</p> <p>From March 2004 until May 2006, 124 HIV infected children were initiated on HAART. The median age (IQR) was 5.0 years (2.1 - 7.0) and 49% (61/124) were female. The median [95% confidence interval (CI)] BAZ, WAZ and HAZ at baseline were 0.29 (-2.9, -1.2), -1.2 (-2.1, -0.5) and -2.06 (-2.9, -1.2) respectively. Baseline median CD4 cell % and log10 HIV-1 RNA were; 11.8% (7.5-18.0) and 5.6 (5.2-5.8) copies/ml. By 48 weeks, mean WAZ and HAZ in the VF/IS group, which was younger, increased from - 0.98 (SD 1.7) to + 1.22 (SD 1.2) and from -1.99 (1.7) to + 0.76 (2.4) respectively. Mean increase in WAZ and HAZ in the VS/IF group, an older group was modest, from -1.84 (1.3) to - 0.41 (1.2) and -2.25 (1.2) to -1.16 (1.3) respectively. Baseline CD4 cell % [OR 6.97 95% CI (2.6 -18.6)], age [OR 4.6 95% CI (1.14 -19.1)] and WHO clinical stage [OR 3.5 95%CI (1.05 -12.7)] were associated with successful treatment outcome.</p> <p>Conclusions</p> <p>HIV infected Ugandan children demonstrated a robust increase in height and weight z scores during the first 48 weeks of HAART, including those who failed to completely suppress virus. Older children initiating HAART with severe immune suppression were less likely to achieve a successful treatment outcome. These data emphasize the importance of initiating HAART early to ensure adequate immune and growth responses.</p
- …