114 research outputs found

    Automated VOI Analysis in FDDNP PET Using Structural Warping: Validation through Classification of Alzheimer's Disease Patients

    Get PDF
    We evaluate an automated approach to the cortical surface mapping (CSM) method of VOI analysis in PET. Although CSM has been previously shown to be successful, the process can be long and tedious. Here, we present an approach that removes these difficulties through the use of 3D image warping to a common space. We test this automated method using studies of FDDNP PET in Alzheimer's disease and mild cognitive impairment. For each subject, VOIs were created, through CSM, to extract regional PET data. After warping to the common space, a single set of CSM-generated VOIs was used to extract PET data from all subjects. The data extracted using a single set of VOIs outperformed the manual approach in classifying AD patients from MCIs and controls. This suggests that this automated method can remove variance in measurements of PET data and can facilitate accurate, high-throughput image analysis

    Co-targeting of convergent nucleotide biosynthetic pathways for leukemia eradication

    Full text link
    Pharmacological targeting of metabolic processes in cancer must overcome redundancy in biosynthetic pathways. Deoxycytidine (dC) triphosphate (dCTP) can be produced both by the de novo pathway (DNP) and by the nucleoside salvage pathway (NSP). However, the role of the NSP in dCTP production and DNA synthesis in cancer cells is currently not well understood. We show that acute lymphoblastic leukemia (ALL) cells avoid lethal replication stress after thymidine (dT)-induced inhibition of DNP dCTP synthesis by switching to NSP-mediated dCTP production. The metabolic switch in dCTP production triggered by DNP inhibition is accompanied by NSP up-regulation and can be prevented using DI-39, a new high-affinity small-molecule inhibitor of the NSP rate-limiting enzyme dC kinase (dCK). Positron emission tomography (PET) imaging was useful for following both the duration and degree of dCK inhibition by DI-39 treatment in vivo, thus providing a companion pharmacodynamic biomarker. Pharmacological co-targeting of the DNP with dT and the NSP with DI-39 was efficacious against ALL models in mice, without detectable host toxicity. These findings advance our understanding of nucleotide metabolism in leukemic cells, and identify dCTP biosynthesis as a potential new therapeutic target for metabolic interventions in ALL and possibly other hematological malignancies

    Lawson criterion for ignition exceeded in an inertial fusion experiment

    Get PDF
    For more than half a century, researchers around the world have been engaged in attempts to achieve fusion ignition as a proof of principle of various fusion concepts. Following the Lawson criterion, an ignited plasma is one where the fusion heating power is high enough to overcome all the physical processes that cool the fusion plasma, creating a positive thermodynamic feedback loop with rapidly increasing temperature. In inertially confined fusion, ignition is a state where the fusion plasma can begin "burn propagation" into surrounding cold fuel, enabling the possibility of high energy gain. While "scientific breakeven" (i.e., unity target gain) has not yet been achieved (here target gain is 0.72, 1.37 MJ of fusion for 1.92 MJ of laser energy), this Letter reports the first controlled fusion experiment, using laser indirect drive, on the National Ignition Facility to produce capsule gain (here 5.8) and reach ignition by nine different formulations of the Lawson criterion

    Lawson Criterion for Ignition Exceeded in an Inertial Fusion Experiment

    Get PDF

    Quantitative Neurologic and Oncologic Positron Emission Tomography: Overcoming Practical and Structural Barriers

    No full text
    Positron Emission Tomography (PET) is an inherently quantitative tool for measuring in vivo biological phenomena. However, there are still many barriers, both practical and structural to robust quantification of data in clinical and pre-clinical settings.First, I present methods for improving quantification of neurologic PET in Alzheimer's disease imaging. Due to the variability in patient anatomy and disease state, it is difficult to accurately compare homologous anatomy between subjects. Here we examine methods of image normalization and automatic image analysis that allow for greatly reduced variance in data measurement. We show that through these methods, both the diagnostic and prognostic utility of the data can be greatly improved.Additionally, we address the structural barriers to quantification in oncologic PET in radio-labeled custom antibodies. These large, high-affinity tracers have been shown, both in silico and in vivo, to display high degrees of heterogeneous binding in target tissues. Due to this phenomenon, classical ODE models of tracer kinetics are no longer valid. We develop and test a new set of non-linear PDE models to accurately represent tracer activity in vivo. We show that the use of classical ODE models will result in high levels of parameter estimate bias, and the new PDE models can accurately fit both in silico and in vivo data with the inclusion of Bayesian prior

    Modelling of radiation losses for ion acceleration at ultra-high laser intensities

    No full text
    Radiation losses of charged particles can become important in ultra high intensity laser plasma interaction. This process is described by the radiation back reaction term in the electron equation of motion. This term is implemented in the relativistic particle-in-cell code by using a renormalized Lorentz-Abraham-Dirac model. In the hole boring regime case of laser ion acceleration it is shown that radiation losses results in a decrease of the piston velocity
    corecore