12,260 research outputs found

    From spin-Peierls to superconductivity: (TMTTF)_2PF_6 under high pressure

    Full text link
    The nature of the attractive electron-electron interaction, leading to the formation of Cooper-pairs in unconventional superconductors has still to be fully understood and is subject to intensive research. Here we show that the sequence spin-Peierls, antiferromagnetism, superconductivity observed in (TMTTF)_2PF_6 under pressure makes the (TM)_2X phase diagram universal. We argue that the suppression of the spin-Peierls transition under pressure, the close vicinity of antiferromagnetic and superconducting phases at high pressure as well as the existence of critical antiferromagnetic fluctuations above T_c strongly support the intriguing possibility that the interchain exchange of antiferromagnetic fluctuations provides the pairing mechanism required for bound charge carriers.Comment: 4 pages, revtex, 4 figures (jpeg,eps,png

    Probing the electron-phonon coupling in ozone-doped graphene by Raman spectroscopy

    Full text link
    We have investigated the effects of ozone treatment on graphene by Raman scattering. Sequential ozone short-exposure cycles resulted in increasing the pp doping levels as inferred from the blue shift of the 2DD and GG peak frequencies, without introducing significant disorder. The two-phonon 2DD and 2DD' Raman peak intensities show a significant decrease, while, on the contrary, the one-phonon G Raman peak intensity remains constant for the whole exposure process. The former reflects the dynamics of the photoexcited electrons (holes) and, specifically, the increase of the electron-electron scattering rate with doping. From the ratio of 2DD to 2DD intensities, which remains constant with doping, we could extract the ratio of electron-phonon coupling parameters. This ratio is found independent on the number of layers up to ten layers. Moreover, the rate of decrease of 2DD and 2DD' intensities with doping was found to slowdown inversely proportional to the number of graphene layers, revealing the increase of the electron-electron collision probability

    A few things I learnt from Jurgen Moser

    Full text link
    A few remarks on integrable dynamical systems inspired by discussions with Jurgen Moser and by his work.Comment: An article for the special issue of "Regular and Chaotic Dynamics" dedicated to 80-th anniversary of Jurgen Mose

    Quantum integrability of quadratic Killing tensors

    Get PDF
    Quantum integrability of classical integrable systems given by quadratic Killing tensors on curved configuration spaces is investigated. It is proven that, using a "minimal" quantization scheme, quantum integrability is insured for a large class of classic examples.Comment: LaTeX 2e, no figure, 35 p., references added, minor modifications. To appear in the J. Math. Phy

    Quantum and classical echoes in scattering systems described by simple Smale horseshoes

    Full text link
    We explore the quantum scattering of systems classically described by binary and other low order Smale horseshoes, in a stage of development where the stable island associated with the inner periodic orbit is large, but chaos around this island is well developed. For short incoming pulses we find periodic echoes modulating an exponential decay over many periods. The period is directly related to the development stage of the horseshoe. We exemplify our studies with a one-dimensional system periodically kicked in time and we mention possible experiments.Comment: 7 pages with 6 reduced quality figures! Please contact the authors ([email protected]) for an original good quality pre-prin

    Perturbed Three Vortex Dynamics

    Full text link
    It is well known that the dynamics of three point vortices moving in an ideal fluid in the plane can be expressed in Hamiltonian form, where the resulting equations of motion are completely integrable in the sense of Liouville and Arnold. The focus of this investigation is on the persistence of regular behavior (especially periodic motion) associated to completely integrable systems for certain (admissible) kinds of Hamiltonian perturbations of the three vortex system in a plane. After a brief survey of the dynamics of the integrable planar three vortex system, it is shown that the admissible class of perturbed systems is broad enough to include three vortices in a half-plane, three coaxial slender vortex rings in three-space, and `restricted' four vortex dynamics in a plane. Included are two basic categories of results for admissible perturbations: (i) general theorems for the persistence of invariant tori and periodic orbits using Kolmogorov-Arnold-Moser and Poincare-Birkhoff type arguments; and (ii) more specific and quantitative conclusions of a classical perturbation theory nature guaranteeing the existence of periodic orbits of the perturbed system close to cycles of the unperturbed system, which occur in abundance near centers. In addition, several numerical simulations are provided to illustrate the validity of the theorems as well as indicating their limitations as manifested by transitions to chaotic dynamics.Comment: 26 pages, 9 figures, submitted to the Journal of Mathematical Physic

    Systematic Low-Energy Effective Field Theory for Electron-Doped Antiferromagnets

    Full text link
    In contrast to hole-doped systems which have hole pockets centered at (±π2a,±π2a)(\pm \frac{\pi}{2a},\pm \frac{\pi}{2a}), in lightly electron-doped antiferromagnets the charged quasiparticles reside in momentum space pockets centered at (πa,0)(\frac{\pi}{a},0) or (0,πa)(0,\frac{\pi}{a}). This has important consequences for the corresponding low-energy effective field theory of magnons and electrons which is constructed in this paper. In particular, in contrast to the hole-doped case, the magnon-mediated forces between two electrons depend on the total momentum P\vec P of the pair. For P=0\vec P = 0 the one-magnon exchange potential between two electrons at distance rr is proportional to 1/r41/r^4, while in the hole case it has a 1/r21/r^2 dependence. The effective theory predicts that spiral phases are absent in electron-doped antiferromagnets.Comment: 25 pages, 7 figure

    Time Evolution of Spin Waves

    Full text link
    A rigorous derivation of macroscopic spin-wave equations is demonstrated. We introduce a macroscopic mean-field limit and derive the so-called Landau-Lifshitz equations for spin waves. We first discuss the ferromagnetic Heisenberg model at T=0 and finally extend our analysis to general spin hamiltonians for the same class of ferromagnetic ground states.Comment: 4 pages, to appear in PR

    Generic Twistless Bifurcations

    Get PDF
    We show that in the neighborhood of the tripling bifurcation of a periodic orbit of a Hamiltonian flow or of a fixed point of an area preserving map, there is generically a bifurcation that creates a ``twistless'' torus. At this bifurcation, the twist, which is the derivative of the rotation number with respect to the action, vanishes. The twistless torus moves outward after it is created, and eventually collides with the saddle-center bifurcation that creates the period three orbits. The existence of the twistless bifurcation is responsible for the breakdown of the nondegeneracy condition required in the proof of the KAM theorem for flows or the Moser twist theorem for maps. When the twistless torus has a rational rotation number, there are typically reconnection bifurcations of periodic orbits with that rotation number.Comment: 29 pages, 9 figure

    Variational Approach to Gaussian Approximate Coherent States: Quantum Mechanics and Minisuperspace Field Theory

    Get PDF
    This paper has a dual purpose. One aim is to study the evolution of coherent states in ordinary quantum mechanics. This is done by means of a Hamiltonian approach to the evolution of the parameters that define the state. The stability of the solutions is studied. The second aim is to apply these techniques to the study of the stability of minisuperspace solutions in field theory. For a λφ4\lambda \varphi^4 theory we show, both by means of perturbation theory and rigorously by means of theorems of the K.A.M. type, that the homogeneous minisuperspace sector is indeed stable for positive values of the parameters that define the field theory.Comment: 26 pages, Plain TeX, no figure
    corecore