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Abstract

We show that in the neighborhood of the tripling bifurcation of
a periodic orbit of a Hamiltonian flow or of a fixed point of an area-
preserving map, there is generically a bifurcation that creates a “twist-
less” torus. At this bifurcation, the twist, which is the derivative of the
rotation number with respect to the action, vanishes. The twistless
torus moves outward after it is created and eventually collides with
the saddle-center bifurcation that creates the period three orbits. The
existence of the twistless bifurcation is responsible for the breakdown
of the nondegeneracy condition required in the proof of the KAM theo-
rem for flows or the Moser twist theorem for maps. When the twistless
torus has a rational rotation number, there are typically reconnection
bifurcations of periodic orbits with that rotation number.
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1 Introduction

The dynamics in the neighborhood of an elliptic periodic orbit of a two-degree
of freedom Hamiltonian flow, or equivalently, an elliptic fixed point of an area-
preserving map, can be elucidated by consideration of their formal normal
forms. When the rotation number, ω, of the elliptic orbit is irrational, the
normal form is called the Birkhoff normal form. Let J denote the transverse
action (the “symplectic radius”) and θ be its conjugate angle. The Birkhoff
normal form for the Hamiltonian is

H(J) = ωJ +
1

2
τ0J

2 +
1

6
τ1J

3 + . . . . (1)

For an area-preserving map with an elliptic fixed point, the Birkhoff normal
form is

J �→ J

θ �→ θ + 2πΩ(J) , (2)

where the rotation number is

Ω(J) = ω + τ0J +
1

2
τ1J

2 + . . . .

This map is also the time 2π map of the Hamiltonian flow. We define the
“twist” to be the derivative of the transverse rotation number with respect
to the action:

τ(J) ≡ dΩ

dJ
= τ0 + τ1J + . . . . (3)

In general, the Birkhoff series does not converge and so strictly speaking
the function Ω does not exist unless the system is integrable. The trun-
cated Birkhoff normal form gives an integrable approximation with a rota-
tion number Ω(J) that approximates the rotation numbers of the Cantor set
of KAM tori near the fixed point of the full system. The actual dynamics
of the generic, non-integrable system includes a chain of n islands located
near each radius where Ω (of the truncated normal form) is m/n, a rational
number. This chain is constructed from an elliptic and hyperbolic pair of
periodic orbits of period n. These orbits are born in an n-tupling bifurcation
that occurs when ω passes through the rational value m/n.
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The character of the bifurcation as ω passes through m/n when τ0 �= 0
depends upon n [3, 10, 12]. When n > 4, the elliptic orbit remains stable,
and the bifurcation gives rise to a chain of n islands. As we recall in the
Appendix, for n = 4 the origin is unstable if the resonant term is large
enough. When n = 3, the resonant term generically dominates the twist
term near the origin, and the origin is unstable at the bifurcation point.

When the rotation number Ω of the normal form is a monotone function
of J , or equivalently, the twist does not vanish, the map is called a “monotone
twist map.” The nonvanishing of the twist also corresponds to the isoener-
getic nondegeneracy condition required for KAM theory [2], in the proof of
the existence of invariant tori. A related, but slightly different twist condi-
tion is given by ∂Θ′/∂J �= 0, which is defined for the full non-integrable map
of the cylinder. For this case, Aubry-Mather theory applies [9] and implies
in particular that there is a pair of rotational m/n periodic orbits for each
rational in the range of Ω.

When the twist vanishes, the dynamics can be much more complicated.
For example, “reconnection bifurcations,” occur near an extremal point of Ω
[8, 7], and the renormalization operator for the destruction of invariant circles
gives a distinct universality class for circles that cross the zero twist line as
opposed to those which do not [4]. Recently in [15] it has been shown that
the “meandering curves” that appear when a twistless curve passes through a
rational rotation number are stable under small perturbations. An extension
of standard KAM theory [5] shows that in two parameter families of area-
preserving maps a diophantine twistless curve persists.

While it appears that τ0 should generically be nonzero, and so the twist
is nonvanishing at least in some neighborhood of the origin, we will show
in this paper that this is not true whenever the rotation number ω passes
through 1/3. This answers the genericity question raised in [15].

To show that the twist generically vanishes, we begin with the normal
form in the neighborhood of a tripling bifurcation. Generally, when the rota-
tion number of the elliptic periodic orbit is rational, there are resonant terms
that cannot be transformed away. If we keep only the first such resonant
term, the Hamiltonian becomes (see e.g. [3, 10])

H̃(I, θ, t) = ωI + AI2 + · · · + BIn/2 cos(nθ − mt) + . . . .

We now use the variable I to denote the “action” for this system; it is not a
true action variable. Here the system is at resonance when ω = m/n. The
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time dependence in H̃ can be eliminated by a transformation to rotating
coordinates, defining φ = θ − mt/n. This gives the new Hamiltonian H =
H̃ − mI/n:

H(I, φ) = εI + AI2 + · · · + BIn/2 cos(nφ) + . . . , (4)

where ε = ω−m/n measures the frequency difference from the resonant case.
The time 2π map of H̃ is an area preserving map which has H as a conserved
quantity. In the rotating frame a period n orbit of the stroboscopic map of
H̃ becomes a family of n fixed points of the stoboscopic map of H.

When the resonant coefficient B vanishes, then the coordinate I is the
true action, J , and the twist for Eq. (4) is τ = 2A + O(J), as we can see by
comparison with Eq. (1). However, when B �= 0, the action is modified and
so is the twist. Moreover when n = 3, the resonant term is of lower order
than the first twist term, and even the O(J0) terms in the twist must be
corrected. We will compute the twist for this system in §2.

We also consider the resonant normal form for an area-preserving map,
(p, q) �→ (p′, q′) where (p, q) are cartesian canonical coordinates. These coor-
dinates are related to the action-angle variables by the complex transforma-
tion.

z ≡
√

2Ieiθ = p + iq . (5)

The resonant normal form, which is most easily expressed as a map on z and
in terms of the multiplier of the fixed point

λ ≡ e2πiω , (6)

is

z′ = λ(z + iαz2z̄ + · · · + βz̄n−1 + . . . ) . (7)

The omitted terms, as we will see below, include terms that are required for
the map to be area-preserving. By comparison with Eq. (2), the twist when
β = 0 is τ = α/π + O(J). The resonant terms, however, will modify the
twist; indeed when n = 3, the resonant terms are of lower order than the
first twist term, and so even the O(J0) terms in τ should be changed.

We will show that whenever the resonant term is nonzero, the twist van-
ishes in the neighborhood of the tripling bifurcation. We will do this by
assuming that ε = ω − m/n �= 0 in Eq. (4) and Eq. (7), so that they can
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be transformed to Birkhoff normal form. This gives an expression for the
twist that diverges at resonance. The twist, however, is well defined away
from resonance, and we will see that τ0 = 0 at some ω = ω0 in the neigh-
borhood of 1/3. At this rotation number a twistless torus is created at the
origin. As ω moves away from ω0, the twistless torus grows, corresponding
to an extremum in Ω(J). Again, since Ω is only defined for the truncated
normal form, the existence of the twistless torus is also only guaranteed for
this approximation. In the full system the twistless torus will only exist for
the Cantor set of values for which its frequency is sufficiently irrational.

As Moser showed [11], the twist for the Hénon map vanishes at ω0 ≈ 0.29.
We show in addition that the twistless circle moves away from the origin as
ω moves towards 1/3. This implies, for example, that when the rotation
number of the twistless circle passes through a low order rational number,
such as 3/10, a reconnection bifurcation [8, 7] should occur. The dynamical
consequences of this have already been observed in [18, 16], though without
explaining their genericity. Using our calculation of the higher order twist,
we will obtain a good approximation for the position of this bifurcation.

More generally, the twist can be forced to vanish at any rotation number
if there are a sufficient number of parameters. For example, for a cubic map,
we will show that with the choice of two parameters we can make τ0 vanish
at ω = 1/5 or 2/5, which results in the instability of the elliptic point at
the bifurcation. Similarly the seventh order resonance can be generically
destabilized in a three parameter family of quartic maps. The instability of
these resonant twistless maps is proved in the appendix.

2 Resonant Hamiltonian flows

In this section we will take advantage of the fact that the resonant normal
form Eq. (4) is integrable, to obtain exact expressions for the twist near
resonance. We begin by rewriting Eq. (4) in the form

H(I, φ) = P (I) + Q(I) cos(nφ), with

P (I) = εI + AI2 + . . . (8)

Q(I) = In/2 (B + . . . ) , n > 2,

where the dots denote finite polynomials in I. Our goal is to transform I to
the true action variable, J ≡ 1

2π

∮
Idφ for Eq. (8) and obtain the expression
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for the rotation number Ω(J). To do this, we assume explicitly that ε �= 0
so that P has a first order zero at the origin.

To find the period, T (h), we solve H(I, φ) = h for φ and substitute this
into the differential equation for I to obtain

T (h) =

∮
dI√

Q2 − (h − P )2
.

Here we have taken into account that the extrema in I are visited n times for
a full turn of φ; therefore the integral has been multiplied by n. D The action
is given by the area under the curve I(h, φ), but it is better to obtain it by
integrating −φ(I, h)dI, because otherwise we would need to solve a quartic
or higher equation for I. The area under I is given by the difference between
the maximum area 2πImax and 2n times the area under the curve φ between
extrema, since the cosine is even, and each extremal is visited n times in one
loop. Hence the action turns out to be

J(h) =
1

2π

(
2πImax(h) − 2n

∫ Imax(h)

Imin(h)

φ(I, h)dI

)
. (9)

As usual one can verify that T (h) = 2πJ ′(h), since the boundary terms
cancel.

As expected, the period is an Abelian integral of the first kind because
P (I) and Q(I)2 are polynomials in I. The action can also be turned into an
Abelian integral by partial integration of Eq. (9). Again the boundary term
cancels and we obtain

Lemma 1. The action J(h) and the period T (h) of the resonant normal
form Hamiltonian Eq. (8) are Abelian integrals on the Riemann surface

Γ : y2 = R(z) = Q(z)2 − (h − P (z))2.

They are given by

2πJ(h) =

∮
γ

P ′(z)Q(z) + Q′(z)(h − P (z))

Q(z)y
zdz

T (h) =

∮
γ

1

y
dz, (10)

where γ corresponds to the real cycles of Γ.
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The degree of R(z) is at least n because the lowest order term in Q(z) is
zn/2. For n = 3 the integrals are elliptic, for larger n they are hyperelliptic.
The equilibrium points of Eq. (8) correspond to the double roots of R(z).
The values of h for which this occurs are called critical values and they can
be determined by the discriminant of R(z). The simplest critical value is
h = 0, since there is always a double root at z = 0:

R(z)|h=0 = Q(z)2 − P (z)2 = −z2ε2(1 + . . . ).

This corresponds to the fixed point at the origin. Since R′′(0) < 0 at h = 0
there is a maximum between the colliding roots so this corresponds to a
vanishing real cycle γ.1 All that is left from the Abelian integral in this case
is the residue of the pole at z = 0. The limiting period is therefore given by

T (0) = 2πi Res
z=0

1

y
=

2π

ε

This is a trivial result, because ε was designed to be the deviation in rotation
number from m/n in the first place. Note, however, that the original variable
I was not the true action. It is the fact that the resonant term is of order
n/2 that the frequency at h = 0 stays the same. A similar calculation will
lead to the twist of the origin, which can be changed by the resonant term if
n = 3.

2.1 Tripling bifurcation for flows

For the tripling bifurcation the Hamiltonian, from Eq. (4), through quadratic
order is

H(I, φ) = εI + AI2 + BI3/2 cos(3φ). (11)

In general A and B will be functions of ε. With the (generic) assumption
that the constant term in the Taylor series of A(ε) and B(ε) does not vanish
and that B(ε) �= 0 we can eliminate both parameters in H upon defining

Ĩ =
A2

B2
I , h̃ =

A3

B4
h , ε̃ =

A

B2
ε , and φ̃ = φ + ψ ,

1R′′′(0) �= 0: for n = 3 it vanishes at ε = B2/2A, but then R(4)(0) = −24A2 < 0.
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where ψ = 0 if AB > 0 and ψ = π/3 otherwise. This scaling leaves only the
two essential parameters (ε̃, h̃), so that the energy equation becomes

h̃ = ε̃Ĩ + Ĩ2 + Ĩ3/2 cos(3φ̃) . (12)

The corresponding elliptic curve is

R(z) = z3 − (h̃ − ε̃z − z2)2 .

We consider ε̃ as the bifurcation parameter and the energy h̃ is the parameter
selecting a particular torus.

0 0.2 0.4-0.2-0.4

0

0.01

-0.01

ε

h
i

ii

iii

iv

~

~

Figure 1: Bifurcation diagram for Eq. (12). The horizontal axis corresponds to
the fixed point at the origin. The upper of the two remaining curves represents
the saddle 3-fold orbit and the lower one the elliptic 3-fold orbit. At ε̃ = 9/32,
where the two lines meet, these orbits collide in a saddle-center bifurcation. The
shaded area is energetically forbidden for motion in real phase space.

The phase portrait in the cartesian coordinates Eq. (5), always has one
equilibrium point at the origin corresponding to the line h̃ = 0 in Fig. 1.
The other equilibria are easily found from the zeros of the discriminant D of
R(z), which is given by

D(h̃, ε̃) = −h̃3
[
256h̃2 + (27 − 144ε̃ + 128ε̃2)h̃ + 4ε̃3(−1 + 4ε̃)

]
.
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Apart from the triple zero at h̃ = 0, D has two distinct real roots for h̃ when
ε̃ < 9/32. These are the energy levels for one of the 3-fold equilibria which
correspond to the period three orbits in the original, nonrotating frame.
The point (ε̃, h̃) = (9/32, (3/16)3) is the cusp in Fig. 1, where the period
three orbits collide. There are four regions in the bifurcation diagram; the
corresponding phase portraits are shown in Fig. 2. In region (i) there is one
interval of positive R corresponding to one interval of real momenta, hence
one torus. Crossing the critical lines to regions (ii) and (iv) creates a second
interval of positive R out of a double root. Entering region (iii) from these
regions by crossing another line of critical points destroys a positive interval
in a double root so again there is only one torus corresponding to each point
in region (iii). Regions (i) and (iii) can also be left by destroying the one
positive interval in a double root so that no motion at all is possible (the
shaded region).

The details of which torus in the phase portrait belongs to what region are
shown in Fig. 2. Consider the one positive interval of region (i): For ε̃ < 0 it
corresponds to tori sufficiently far away from the origin (part of dotted line);
for 0 < ε̃ < 1/4 it corresponds to all tori outside the separatrix (dotted line);
for 1/4 < ε̃ < 9/32 it corresponds to all tori outside the separatrix (dotted
line) and also to tori sufficiently close to the origin (part of solid line); for
ε̃ > 9/32 it corresponds to all tori (dotted line). For the other regions the
correspondance is analogous. The boundaries of the regions, where two roots
of R coalesce, correspond to the equilibrium solutions. Note that the origin
is a minimum of H((q2 +p2)/2, arctan p/q) for positive ε̃ and a maximum for
negative ε̃, showing that it is stable when ε̃ �= 0. Also note that there is no
change in the dynamics when ε̃ crosses the value 1/4.

2.2 The twist

The twist τ(h) of a torus with energy h is given by Eq. (3), thus

τ(h) =
∂Ω

∂J
=

Ω′(h)

J ′(h)
= − J ′′(h)

J ′(h)3
.

or, expanding near the origin in a series in J , we have

τ(J) = −ε3J ′′(0) + ε4
[
3εJ ′′(0)2 − J ′′′(0)

]
J + O(J2) .

To compute these first two terms in the twist, we must find the second and
third derivatives of J(h) at h = 0.
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1/40 9/32

Figure 2: Sketch of the bifurcation diagram for the tripling bifurcation in (ε̃, h̃).
The thick curves represent the energy levels of the equilibrium points. The phase
portraits correspond to fixed values of ε̃, and the thin, vertical lines represent the
energy ranges for the topologically distinct families of tori, shown in each phase
portrait. Each group of thin lines corresponds to a single ε̃, but they are drawn
slightly skewed for clarity.

Lemma 2. The twist of the fixed point at the origin of the Hamiltonian
Eq. (11) is given by Eq. (3) where

τ0 = 2A − 3B2

2ε

τ1 =
3

2

B2

ε3
(8εA − 3B2) . (13)

Proof. Upon manipulation of Eq. (10), we can reduce the integrals to calcu-
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late to

J ′′(h) =
1

2π

∮
h − P (z)

y3
dz

J ′′′(h) =
1

2π

∮ (
3Q2

y5
− 2

y3

)
dz .

To evaluate the twist we need to compute these integrals at h = 0. Since the
cycles reduce to loops around the origin, this amounts to computing residues
of the integrands.

Changing the Hamiltonian by adding higher order terms in P or Q, or
adding more trigonometric terms with amplitudes at least I5/2 will change
the coefficient of z4 and higher order terms. However, this coefficient does
not influence the residue of J ′′, so that the twist τ0 is not changed by these
terms. The next order twist τ1 can, however, be changed. The complete
second twist is calculated for maps in the next section.

A similar calculation for n > 3 in Eq. (4), shows that the lowest order
twist τ0 is independent of B. Thus it vanishes only if the bare twist term,
A = 0. This shows that the tripling normal form is the only one for which
the twistless torus is generically created at the origin. The reason that the
tripling is different is that the order of Q(I) is smaller than that of the twist
term AI2.

Lemma 2 implies that the twist vanishes at the origin when

ε = ε0 ≡
3B2

4A
, (14)

which corresponds to the frequency, in the nonrotating frame, of

ω0 =
1

3
+

3B2

4A
.

The twistless curve moves away from the origin as ε moves towards zero, cor-
responding to approaching the tripling bifurcation. Using these expressions,
we can compute the rotation number of the twistless curve near ε0 where it
is created. In the original nonrotating frame, the rotation number is given
by

Ω0(ω) = ω − 1

3

A

B2
(ω − ω0)

2 + O(ω − ω0)
3 ,

where we have expressed it as a function of the rotation number ω of the
origin. The twistless torus can be seen in Fig. 3, which is a contour plot
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of the rotation number on the bifurcation diagram. Since Ω′(h) = 0 at
the twistless torus, it corresponds to the locus of points where the contours
are vertical. The twistless torus emerges from the origin at ε̃ = 3/4, and
collides with the saddle-center bifurcation at ε̃ = 9/32. In region (ii) the
plotted curves correspond to the rotation number of the torus in the central
triangle; in region (iv) they give the rotation number of the torus in the
outer region. In this way the rotation number can be made continuous. The
torus in the central triangle corresponding to region (iv) has the negative
rotation number of the one in the outside region with the same h. This is a
result of the sum rule

∮
γ1+γ2

dz
y

= 0, where the γi are the two real cycles for

n = 3. In region (iii) the rotation number (in the rotating frame!) of the tori
surrounding the 3 stable fixed points is shown. In the non-rotating frame
the whole island would have rotation number 1/3 with respect to the central
fixed point. In the rotating frame, however, this rotation number measures
the winding around each of the respective three fixed points.

-0.4 0 0.4 0.8

-.02

0

.02

.04

h

~

~

ε

3/49/32

Figure 3: Lines of constant rotation number spaced equidistant with ∆Ω =
0.02 on the bifurcation diagram for the tripling bifurcation. The contours cluster
around the line of the unstable 3-fold orbit, because there the period T diverges
logarithmically.

Since the expression for τ0 is not affected by higher order terms in P or
Q, we can describe the generic scenario of the tripling bifurcation as follows.
A sufficient distance from the tripling bifurcation, when ε̃ > 3/4, the peri-
odic orbit has twist, i.e., the rotation number is a monotone function of the
transverse action near the orbit. Note that this corresponds to ω > 1/3 if the
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rotation number increases with action, i.e., A > 0, otherwise it corresponds
to ω < 1/3. As ω moves towards 1/3 or equivalently as ε̃ decreases toward
zero, but before there is any obvious sign of the 1/3 bifurcation, the central
periodic orbit loses its twist at the parameter value ε̃ = 3/4.

Beyond that point the twist in the island is no longer monotone, and
there is a twistless torus somewhere in the island. For ε̃ < 3/4 a generic
perturbation of H cannot destroy a diophantine twistless curve with nonzero
second twist, as is shown in [5]. The difference with ordinary KAM theory
is that for small perturbations the twistless torus with the same rotation
number exists not necessarily for the same but for slightly changed parameter
ε̃. As ε̃ → 9/32+ the twistless torus reaches rotation number ω = 1/3 and
there is a saddle-center bifurcation creating a pair of period three orbits at
nonzero radius in the island. The twist inside the central triangle is opposite
to that outside the period three island chain. Beyond this point the twistless
torus is replaced by the separatrix with rotation number 1/3. Of course, the
separatrix is generically a homoclinic tangle.

Eventually, when ω = 1/3 or ε̃ = 0, the saddle period three orbit collides
with the central periodic orbit. Moving past this point, the saddle period
three orbit re-emerges, and the origin has changed the sign of its twist. Thus
for ε̃ < 0, the rotation number is again a monotone increasing function.

We conclude by stating this more formally

Theorem 3. Near a tripling bifurcation of a periodic orbit, a two degree
of freedom Hamiltonian system has a codimension one twistless bifurcation,
corresponding to the vanishing of the twist at the periodic orbit. For the
normal form, Eq. (11), this results in the creation of a twistless curve at
ε̃0 = 3/4, Eq. (14), that moves away from the origin as the tripling point is
approached, and eventually collides with the saddle-center bifurcation of the
period three orbits.

Note that the coefficients of the original normal form, Eq. (8) can be
taken to be constants only when ε is sufficiently small, or equivalently, ω
is close to 1/3. However, we can always transform a Hamiltonian with an
elliptic fixed point into Eq. (8) as long as ω �= 0, 1/2. Also higher order terms
can be removed assuming that the specific ω is nonresonant to that order.
In this case, we need not assume that ε is small; however, the coefficients of
the normal form will depend upon ε. In this case Eq. (11) is valid sufficiently
close to the origin, and our scaling to obtain Eq. (12) is valid provided only
that the coefficients A and B do not vanish over the desired range of ε.
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The statement about the creation of the twistless curve is only based on a
calculation near the origin, and therefore valid. It might of course happen
that a given one parameter family of Hamiltonians never reaches the creation
of the twistless curve, because e.g., the frequency of the fixed point is not
a monotonous function of the parameter (it might, e.g., not even reach the
1/3 resonance). The global fate of the twistless curve as stated in the second
sentence of the theorem might be changed by higher order terms that are
not removable, e.g. close to the 2/5 or 2/7 resonance. This is why we only
claim that this behavior occurs in the normal form and not necessarily in the
original Hamiltonian.

3 Tripling bifurcation for area-preserving maps

In this section we study the normal form for an area-preserving map, f , in
the neighborhood of an elliptic fixed point with a tripling bifurcation. We
will show that the twist generically vanishes in the neighborhood of this
bifurcation.

Suppose that f has an elliptic fixed point at the origin with rotation
number ω, i.e., with linear multipliers λ and λ̄, Eq. (6). We can put the lin-
earization of the map in the complex, diagonal normal form (z, z̄) �→ (λz, λ̄z̄)
by introducing a pair of complex variables (z, z̄) defined by the linear trans-
formation

(x, y)T =
1

2i
(vz − v̄z̄) , (15)

where v is the complex eigenvector of Df(0) associated with λ. If we choose
the normalization of the eigenvectors so that v̄× v = 2i, then the z variables
are related to action-angle variables by Eq. (5). In the new variables, the
map has the power series

z �→ λ

[
z +

r∑
n=2

n∑
j=0

aj,n−jz
j z̄n−j

]
+ O(r + 1) , (16)

where the terms are ordered as homogeneous monomials of degree n in z
and z̄. The map for z̄ is simply the complex conjugate of Eq. (16). Note
that the complex coefficients, ajk, are not all independent when the map is
area-preserving.
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The normal form for Eq. (16) can be computed by applying a sequence of
canonical transformations to eliminate as many terms in the series as possible
[13]. As is well known each of the coefficients ajk can be formally eliminated
providing the multiplier does not satisfy a “resonance” condition of the form

λj−k−1 = 1 . (17)

In particular for any λ, the terms with j − k = 1 cannot be eliminated—
these we call the “twist” terms, since they give rise to shear in the rotation
about the fixed point. These terms give rise to the Birkhoff normal form
Eq. (2). However, if λ is a root of unity, then other resonant terms occur.
For example, when ω = 1/3, hence by (6) λ = exp(2πi/3), then we cannot
eliminate terms for which j−k = 1 mod 3. In this case the resonant normal
form is

z �→ λ
[
z + a02z̄

2 + a21z
2z̄ + a13zz̄

3 + a40z
4 + a32z

3z̄2 + a05z̄
5
]
+ O(6)

To study the dynamics in the neighborhood of the tripling bifurcation,
we assume that the lowest order resonant term, a02, is nonzero. In this case
we can scale z to eliminate this coefficient. When the map is area-preserving,
the thirteen real coefficients in the resonant normal form must satisfy four
conditions through fifth order. After applying these conditions and scaling
the map to eliminate the coefficient a02, we can reduce the resonant normal
form to a seven parameter family through 5th order

z �→ λ
[
z + z̄2 + (1 + iα)z2z̄ + (β + iγ)zz̄3 (18)

+ a40z
4 + (δ + iη)z3z̄2 + a05z̄

5
]
+ O(6) .

The real coefficients α, β, γ, η and the complex coefficient a05 are arbitrary
and

a40 =
1

4
[2 + β + i(2α − γ)] , δ = 2β − 1 + α2

2
.

The third power of this map can be approximated (to any desired finite
order) by the time 2π map of a Hamiltonian, which gives the connection to
the previous section.

Taking the resonant form Eq. (18) as our model, we imagine that the
coefficients are functions of ω—constants in the simplest case—and that ω
is the bifurcation parameter. When ω �= 1/3 the resonant form can be
transformed to Birkhoff normal form. In fact if ω is not 1/4, 1/5 or 2/5, we
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can reduce the map to Birkhoff normal form through fifth order. Our goal
is to compute the twists τ0 and τ1 for this map. As already noted in the end
of the last section the transformation to this particular form is possible even
far away from the resonant case. Even though the 1/3-resonant term could
be removed when ω �= 1/3, it does not have to be removed. At least close to
the origin and away from other low order resonances the above normal form
therefore is a good approximation for a large neighborhood of ω = 1/3.

To carry out the transformation we must apply a sequence of four, near
identity coordinate transformations to eliminate successively all of the quad-
ratic, cubic, quartic and quintic terms except for the twist terms. One way
to obtain area-preserving coordinate transformations is to use a canonical
generating function of the form

Pq + F (r)(P, q) ,

where F (r) is a homogeneous polynomial of degree r + 1. This implicitly
generates a canonical transformation through the equations

p = P +
∂F (r)

∂q
(P, q) , Q = q +

∂F (r)

∂P
(P, q) .

The lowest order terms of the transformation (q, p) �→ (Q, P ) are easily
obtained explicitly

P = p − ∂F (r)

∂q
(p, q) + O(2r − 1), Q = q +

∂F (r)

∂p
(p, q) + O(2r − 1) ,

(19)

and the higher order terms can be obtained with more effort, order-by-order.
Converting the transformation to complex coordinates, with Z = P + iQ,
yields a transformation of the form

Z = z +
r∑

i=0

bi,r−iz
iz̄r−i + O(2r − 1) ,

where the coefficients bij can be explicitly computed in terms of the coeffi-
cients of F (r).

We wish to compute the nonresonant Birkhoff normal form for Eq. (18)
through fifth order. To do this, we first apply the canonical transformation
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F (2), with the coefficients chosen to eliminate the quadratic term in Eq. (18).
This is possible whenever ω �= 1/3. This transformation generates terms of
cubic and higher order in the map. Whenever ω �= 1/4 we can then apply a
transformation generated by F (3) to eliminate all of the cubic terms, except
for the twist term z2z̄. This transformation will not modify the quartic
terms in the map, but because of the O(5) correction terms in Eq. (19), it
will modify the quintic terms. Finally, whenever ω �= 1/5 or 2/5, we can
apply transformations F (4) and F (5) to eliminate all of the quartic and all
of the quintic terms except for the twist z3z̄2. These transformations will
not modify the coefficient of the twist term, however, and therefore we do
not need to compute them in order to find the Birkhoff normal form to fifth
order. This yields the Birkhoff normal form for Eq. (18) in the form of Eq. (2)
where

πτ0 = α − (3t2 − 1)

t(t2 − 3)

πτ1 = 4(η − γ) + 12
3t2 − 1

t(t2 − 3)

(
(t2 + 1)3

2t2(t2 − 3)2
+ πτ0

3t2 − 1

t(t2 − 3)
− β

)
,(20)

with t ≡ tan(πω).
Near ε = 0 we can reduce these expressions to

πτ0 = − 1

3πε
+ α + O(ε)

πτ1 =
2

9π3ε3
+

4

3πε2
τ0 −

4

πε
β + 4(η − γ − 2τ0) + O(ε1) . (21)

The dominant terms in these expressions, though they look quite different,
are actually equivalent to those obtained for the flow in Lemma 2 providing
we set β = η = γ = 0.2 Nonzero values would correspond to higher order
terms in the flow Hamiltonian.

The function τ0(ω) in Eq. (20) is shown in Fig. 4. It is monotone increas-
ing and maps the domain [1

6
, 1

3
)∪ (1

3
, 1

2
) one-to-one onto (−∞,∞). Moreover,

the coordinate transformations that we carried out to compute τ0 are valid

2The time 2π map of the flow of Eq. (11), is approximately

ζ ′ �→ λ

(
ζ + 2πiA|ζ|2ζ +

3πiB√
2

ζ̄2

)
,

which is equivalent to Eq. (18), upon identifying α = 2πA
s , where s = (3πB)2/2 is the

factor that scales the action to normalize a02 in the map.
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in this domain. Thus for any α, there is a rotation number ω0 for which
τ0(ω0) = 0. If ω0 is not 1/5, 1/4 or 2/5 then the transformations leading to
the expression for τ1 are valid. Whenever τ1(ω0) �= 0, as is generically true for
our expressions, the Moser twist theorem [13] implies that there are invariant
circles in the neighborhood of the elliptic point. Thus we can conclude

Theorem 4. Let fω be area-preserving map with an elliptic fixed point that
has rotation number ω. Suppose that when f is transformed to its resonant
normal form, Eq. (18), the coefficient α is finite (i.e. that a02(ω) �= 0). Then
there is an ω0 ∈ [1

6
, 1

3
) ∪ (1

3
, 1

2
) such that fω0 has a twistless bifurcation, i.e.

where τ0(ω0) = 0, from Eq. (20). The elliptic fixed point is stable at ω0

whenever ω0 �∈ {1/5, 1/4, 2/5}, and τ1(ω0) �= 0, as is generically the case.

τ0

ω

1

2

3

0

-1

-2

-3

0.1 0.2 0.3 0.4 0.5

Figure 4: Plot of the twist τ0(ω) in Eq. (20) with α = 0.

Note that in Eq. (21) the dominant contribution to τ1(ω0), when ω0 is
reasonably close to 1

3
, has the sign of ε. Thus there are two typical scenarios

for the twistless bifurcation. If ω0 < 1
3
, then typically τ1(ω0) < 0, and so

the rotation number Ω(J) is locally monotone decreasing as ω → ω0 from
below. The twistless curve is created at a local maximum of Ω(J) which
moves away from the origin as ω approaches 1

3
. Conversely, if ω0 > 1

3
,

then typically, τ1(ω0) > 0, so the rotation number is monotone increasing as
ω → ω0 from above. The twistless curve corresponds to a local minimum of
Ω(J) which moves away from the origin as ω moves towards 1

3
. On the other

hand, it is also possible that τ1(ω0) has the opposite sign of ε, in which case
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the bifurcation creates a twistless curve as ω moves from ω0 in the direction
away from 1

3
.

In the actual dynamics we expect that when the rotation number of the
twistless curve passes through rational points, there will be reconnection
bifurcations [8, 7] in which two island chains with the same rotation number
annihilate each when they collide at the twistless “curve.” We expect this
to happen often for the island chains with rotation numbers in the interval
[ω0,

1
3
), because after birth, they will travel outward from the fixed point,

and if they move rapidly enough will cross the twistless curve.
In the next sections, we will give examples of the twistless bifurcation for

the Hénon map, and for a quartic map, where we can choose parameters so
that ω0 is a low order rational.

3.1 Tripling bifurcation for the Hénon map

Any quadratic, area-preserving map of the plane can be written in the form
[6]

(x, y) �→ (y − k + x2,−x) .

It has an elliptic fixed point at xe = −ye = 1 −
√

1 + k when −1 < k < 3.
The rotation number at the fixed point is

ω =
1

π
arcsin

(
1 + k

4

)1/4

.

The normalized, complex eigenvector is v = 1√
s
(−λ, 1)T , where s = sin(2πω).

Using Eq. (15), shifted to the elliptic fixed point, we define the complex
variable

z = − 1√
s

(
x − xe + λ̄(y − ye)

)
,

so that the Hénon map becomes

z �→ λz +
1

4s3/2

(
−λz + λ̄z̄

)2
.
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Applying the normal form transformation reduces the map to the Birkhoff
normal form, Eq. (2), with

τ0 =
1

26π

(3 t2 − 5)(1 + t2)3

t4(3 − t2)

τ1 =
1

213π

(1 + t2)6(51t10 − 637t8 + 2038t6 − 2706t4 + 2055t2 − 705)

t9(t2 − 1)(t2 − 3)3
.

where t = tan(πω), as before. Moser previously obtained τ0 in [11]3. Note
that τ0 vanishes only when t =

√
5/3, which occurs when ω = ω0 =

1
2π

arccos(−1
4
)) ≈ 0.2902153116, or k = 9/16. As Moser noted, ω0 is a

transcendental number, and therefore satisfies a Diophantine condition. Ac-
cording to a theorem of Rüssmann, this implies that there are invariant
curves in the neighborhood of the fixed point so it is stable. This result is
obtained more easily by noting that τ1(ω0) ≈ −.3366 is nonzero. In this case
the stability of the fixed point follows from the Moser twist theorem [13].

0.8

0.4

0

-0.4

-0.8

0.2 0.3 0.4

τ

ωω0

Figure 5: Plot of τ0 (thick line) and τ1 (thin line) for the Hénon map as a function
of ω. Here τ0 vanishes only at ω ≈ 0.2902153116, and τ1 at ω ≈ 0.2308206101,
0.3137515644, and 0.3944381765.

Both twist functions are shown in Fig. 5 as a function of ω. The Birkhoff
normal form has a curve of zero twist that is born at ω0 and moves outward

3Moser’s equivalent expression is apparently not written in standard canonical vari-
ables, and differs from ours by a factor of −1/2.
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in action as ω increases at least up to 0.31375 where τ1 vanishes. This
upper endpoint is artificial, however, since the higher order twists will become
increasingly important as τ1 nears zero. The rotation number of the twistless
curve is approximately

Ω0(ω) ≈ ω − 1

2

τ 2
0

τ1

. (22)

This function is shown in Fig. 6. Based on the flow results, we expect that
the twistless curve in some sense collides with the saddle-center point of the
period three orbit at k = 1. This corresponds to ω = ω5 in the figure so
that Ω0(ω5) = 1/3. We saw in §2 that the twistless curve does collide with
the saddle-center bifurcation for the resonant normal form of the flow, which
was integrable and for which we obtained an exact expression for Ω. The
predictions of the normal form for the map, however, are not of much use
here because the Hénon map exhibits considerable chaos for orbits at these
radii. If the twistless “curve” continues to the tripling, it will no longer be
an invariant circle; presumably it will be a cantorus.

0.3
ω1−4ω0

Ω0

0.32

ω

0.34

0.30

0.310.29

sn(1/3)

ω5
0.32

Figure 6: The rotation number of the twistless circle, Ω0(ω) near the tripling
bifurcation of the Hénon map.

In the interval where the twistless curve exists, ω0 < ω < ω5, there
should be many unusual bifurcations. For example, whenever the twistless
curve crosses a rational rotation number, there will typically be a collision
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of two island chains of periodic orbits with this rotation number. The most
prominent case corresponds to the lowest order rational in this interval, 3/10,
which we sketch in the phase portraits in Fig. 7. Similar bifurcations can
be observed when the twistless curve passes through other low order ratio-
nals (e.g. 4/13 or 5/16). The normal form indicates that the twistless curve
has rotation number Ω0(ω) = 3/10, when ω ≈ 0.2995198, using the expan-
sion Eq. (22). Translating back to the parameter of the Hénon map, this
corresponds to k ≈ 0.7060175. Indeed there is a saddle-center 3/10 bifurca-
tion near k = 0.7063832, which is very close to our prediction. However, the
situation is more complicated than the normal form would indicate. We list
the bifurcations in Table 1, and sketch the corresponding situation in Fig. 8.
The four 3/10 orbits are created in two successive 3/10 saddle-center bifur-
cations at ω1 and ω2. In the interval ω2 < ω < ω4 there are four 3/10 orbits,
two are elliptic and two are hyperbolic. The stable and unstable manifolds
of the two hyperbolic 3/10 orbits undergo a reconnection bifurcation [7] near
ω3, see Fig. 7. Subsequently the “inner” pair of 3/10 orbits collides with the
elliptic fixed point, in a decupling bifurcation at ω4 = 3/10. The outer pair
of 3/10 orbits move away from the origin and persist as k → ∞. These last
two orbits are the orbits that we continue from the “anti-integrable” limit,
[17].

The word “reconnection” should be clarified. In the integrable approx-
imation [8, 15] an actual reconnection occurs at a point, ω3. The Hénon
map is of course not integrable, and therefore ω3 is strictly speaking not a
point, but rather should be replaced by the interval for which the map has
heteroclinic orbits between the two unstable periodic orbits. This interval is
extremely small.

3.2 Normal form for a quartic map

To study codimension two bifurcations, we need a map with two essential
parameters. Since the quadratic map has only one (the rotation number), we
turn to a higher order polynomial map which we take to be the composition
of a rotation and a shear(

x

y

)
�→ R2πω

(
x

y + x2 + cx3 + dx4

)
,

where Rϕ is a counterclockwise rotation by the angle ϕ. This map has 3
essential parameters, ω, c, and d. According to our general theory, we expect
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a) b) c)

d) e) f)

Figure 7: Phase portraits of the Hénon map near ω3 where the 3/10 recon-
nection bifurcation occurs. From left to right and top to bottom the parameters
are k = 0.70638, 0.70639, 0.70640, 0.70640121, 0.70642, 0.70650. These parameter
values generate representative frequencies in the range ω0 < ω < ω4 as shown in
Table 1.

that with a choice of c we can specify ω0 so that τ0 = 0 when ω = ω0. With
the proper choice of d we can set τ1 = 0, as well.

Transforming this map into Birkhoff normal form, we obtain Eq. (2),
providing the nonresonance conditions are satisfied as usual. The twists are

πτ0 =
3c

8
+

5 − 3t2

8t(t2 − 3)

πτ1 =
−705 + 2055t2 − 2706t4 + 2038t6 − 637t8 + 51t10

512t3 (t2 − 3)3 (t2 − 1)

+
3c

256t(t2 − 1)

[−225 + 556t2 − 534t4 + 204t6 − 17t8

t(t2 − 3)2
+

c

2
(17 − 38t2 + 17t4)

]

+
3d

16

7 − 5t2

t(t2 − 3)
.
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Table 1: Bifurcation Points for the Hénon map

Bifurcation label ω k

twistless ω0 0.2902153 9
16

sn(3/10) ω1 0.2995432 0.7063832

sn(3/10) ω2 0.2995438 0.7063926

reconnection ω3 0.2995444 0.70640121

decupling ω4
3
10

0.7135255

sn(1/3) ω5 0.3179717 1

tripling ω6
1
3

5
4

For the cubic map (d = 0) we can make τ0 = 0 at any ω0 �= 1/3 with an
appropriate choice of c. For example, we can set ω0 = 1/5 or 2/5, and then
choose

c =
1

6

√
10 ± 2

√
5 .

When τ0 = 0 at a fifth order resonance, Th. 5 in the Appendix implies that
the fixed point is unstable at the bifurcation point. The corresponding map
with ω ≈ 1/5 is shown in Fig. 9. The instability is difficult to see numerically
because the size of the nonlinear terms is so small near the fixed point, though
in the figure it is clear that the unstable motion does approach the origin.
It is interesting to note that the instability is much more pronounced for
ω = 1/5 than for ω = 2/5.

The second twist τ1 can be used in two different ways. For the cubic map
with d = 0 we can show that if τ0 = 0 then always τ1 �= 0, so that the only
exceptions to stability can be the third through sixth order resonances. The
value of c that makes τ0 = 0 at t = t0 and the corresponding value of τ1 are

c =
5 − 3t20

3t0(t20 − 3)
, πτ1 =

105 − 305t20 + 353t40 − 167t60 + 30t80
48t30(t

2
0 − 3)3(t20 − 1)

.

It is easy to see that the polynomial in the numerator of τ1 is positive, so
that τ1 is always nonzero if τ0 vanishes for the cubic map.

For the quartic map with d �= 0 we can make both twists vanish at
arbitrary ω0, in particular at seventh order resonance. In general the twists
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ωω5ω0 ω1ω2

3/10 1/3

twistl
ess curve

3/10−

3/10+

1/3+

1/3−
ω3

ω1

ω2

ω5—ω6

> ω6

ω2—ω3

ω3—ω4

ω4—ω5 ω5

ω6

ω4
ω6

ω3

Figure 8: Sketch of the 3/10 and 1/3 bifurcations for the Hénon map as a function
of ω. Representative phase portraits are also shown. See Table 1 for bifurcation
values.

vanish when

c =
5 − 3t20

3t0(t20 − 3)
, d =

105 − 305t20 + 353t40 − 167t60 + 30t80
9t20(t

2
0 − 3)2(t20 − 1)(5t2 − 7)

.

Thus if we choose t0 = tan(π/7) we obtain c ≈ 1.0763012774 and d ≈
.7144291292. By Th. 5 the fixed point is unstable for these parameter values.
Note that if we let c and d be the above functions of ω we obtain the very
special one parameter family of quartic maps for which the first two twists
vanish for every frequency.
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Figure 9: Phase portrait of the cubic map (d = 0) with τ0 = 0 at ω = 1/5 −
ε, 1/5, 1/5 + ε, ε = 0.0004. At ω = 1/5 the fixed point is shown to be unstable.

4 Conclusion

By analyzing the normal form for Hamiltonian flows and area-preserving
maps in the neighborhood of the tripling bifurcation we have shown that
there exists a bifurcation creating a twistless torus. Thus in the presence of
a tripling bifurcation, the non-degeneracy condition of the KAM theorem is
violated on a one parameter family of tori in phase space in the neighbor-
hood of the bifurcation. Moreover, in the nonintegrable case, reconnection
bifurcations occur for orbits that collide at the twistless torus, such as the
3/10 orbits of the Hénon map in Fig. 8.

Using the notation of Fig. 8, we say that a twistless bifurcation occurs
at ω = ω0. The pair of period three orbits is created in a saddle-center
bifurcation at ω5, and the tripling occurs at ω6 = 1/3. For the case of
the resonant Hamiltonian normal form, Eq. (14) implies that the relative
positions of these bifurcations have a simple ratio

ω0 − 1/3

ω5 − 1/3
=

8

3
.

Note that this ratio for the Hénon map is 2.8069, only a 5% error. Since the
Hamiltonian resonant normal form is integrable, we can follow the twistless
torus; it exists when the rotation number of the central periodic orbit is in the
interval ω0 to ω5. Moreover, the rotation number of the twistless curve itself,
Ω0, takes all of the values in the interval from ω0 to 1/3. For every rotation
number in this interval there will generically be a reconnection bifurcation for
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the full two degree of freedom Hamiltonian. Hence this type of bifurcation
occurs generically in nonintegrable Hamiltonian systems.

Similarly any area-preserving map that has a tripling bifurcation of an
elliptic fixed point and that satisfies the nondegeneracy condition that the
coefficient, a02, does not vanish, has a twistless bifurcation. The dependence
of the twist on rotation number is more complicated for this case than for
the Hamiltonian, nevertheless, the rotation number of the fixed point unfolds
the bifurcation. Moreover, there is always an ω ∈ [1/6, 1/2) for which the
resonant normal form has a twistless bifurcation.

As an example, the Hénon map has a twistless bifurcation at k = 9/16,
and the twistless curve moves outward as k increases, causing reconnec-
tion bifurcations. We examined in particular the bifurcations of the 3/10
orbits. The vanishing of twist(s), as we showed for a cubic/quartic area-
preserving map, can also lead to the instability of the fixed point at quintu-
pling/septupling bifurcations.

The whole scenario is similar for the quadrupling bifurcation, when the
resonant term dominates the twist term in magnitude (see the Appendix). In
this case a pair of period 4 orbits are created in a saddle-center bifurcation.
and a twistless torus is created at a cusp in the bifurcation diagram similar
to that in Fig. 1. However, in this case the twistless curve does not collide
with the fixed point, and a simple prediction about what rotation numbers
must pass through the twistless curve is not possible.

It would be interesting to generalize these results to higher dimensional
systems.

5 Appendix:

Instability of resonant maps without twist

In this section we give sufficient conditions for which a map of the plane with
eigenvalues that are nth roots of unity has an unstable fixed point. Here the
condition of area preservation is not necessary. Examples of this behavior
are well known [13], and necessary and sufficient conditions for instability
have been determined in [14, 1]. However, we have not found a simple and
explicit proof of instability for the case where the resonant term has the
lowest possible order.

To study this problem, we put the map in the normal form Eq. (7). We
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will show that the fixed point is generically unstable whenever all of the twist
terms vanish that are of lower order than O(n− 1), the order of the resonant
term. When n is even, there is a twist term of the same order as the resonant
term. In this case the O(n−1) twist term need not vanish, but its magnitude
must be dominated by the resonant term.

Theorem 5. Let f be a Cn map of the plane with a fixed point at the origin.
Suppose that the multipliers of the fixed point are nth roots of unity, and that
when f is put in normal form, the low order twist coefficients vanish:

aj,j−1 = 0 , 1 < j <
n

2
,

but the lowest order resonant term is nonzero

a0,n−1 �= 0 .

If n is even, assume in addition that

|an/2,n/2−1| < |a0,n−1| .

Then the origin is unstable.

This instability is well known. Our goal in this appendix is to give a
simple, explicit proof.

Note that when n = 3, the assumed form is generic, but for n = 4, the
first twist, a21, is assumed to be small, and when n = 5 it is assumed to
vanish. As we saw in §3.2 the first two twists vanishes generically in a two
parameter area-preserving family; one parameter to adjust the frequency and
the second one to make the first twist vanish.

Proof. When n is odd the assumed normal form is

z′ = λ(z + αz̄n−1) + O(n) .

We adapt the proof from Siegel and Moser [13]. Begin by scaling z using
the transformation z → zs where s determined by s̄n−1/s = (nα)−1. Then,
using the fact that λn = 1, the nth power of z′ becomes

(z′)
n

= zn + zn−1z̄n−1 + O(2n − 1) .

Introducing new coordinates Z by

zn = Z = X + iY = R exp iΦ ,
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gives

Z ′ = Z + R2−2/n
(
1 + η(Z, Z̄)R1/n

)
,

where the higher order terms have been represented by a factor η, which,
since f is Cn, is bounded as R → 0. The purpose of the scaling to eliminate
α is that the real part of this map now becomes

X ′ = X + R2−2/n
(
1 + �(η)R1/n

)
.

Since η is bounded, there is an R0 such that for all R < R0, we have
|�(η)R1/n| < 1/2. Thus whenever R < R0, X ′ > X + 1

2
R2−2/n, and so

X is monotone increasing in each step of the map. It is easy to see that this
implies that the fixed point is unstable.

The case of even n is slightly harder because there can be a twist term of
the same order:

z′ = λ
(
z + αz̄n−1 + βz|z|(n−2) + O(2n − 1)

)
.

If β happens to be zero the above proof works. When β is nonzero the
stability of the fixed point is determined by the relative size of the resonant
term and the twist term. Again we scale away α and the nth power of the
new map is

(z′)
n

= zn + (zz̄)n−1 + β̃zn|z|(n−2) + O(2n − 1),

where β̃ = β/|α|. In the new coordinates this becomes

Z ′ = Z + R2−2/n(1 + β̃ exp(iΦ) + ηR1/n),

and the map for the real part is

X ′ = X + R2−2/n
(
1 + �(β̃ exp(iΦ)) + �(η)R1/n

)
.

So if 1 + �(β̃ exp(iΦ)) > 0 for all Φ the argument of the previous case
applies. Therefore the instability criterion is |β|/|α| < 1: if the “twist” term
is smaller than the resonant term the mapping is unstable. The well known
example of this type is the quadrupling bifurcation. Our calculation shows
that a similar codimension two bifurcation occurs for the area-preserving
sextupling bifurcation.
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