10,533 research outputs found

    Polymeric compositions and their method of manufacture

    Get PDF
    Filled polymer compositions are made by dissolving the polymer binder in a suitable sublimable solvent, mixing the filler material with the polymer and its solvent, freezing the resultant mixture, and subliming the frozen solvent from the mixture from which it is then removed. The remaining composition is suitable for conventional processing such as compression molding or extruding. A particular feature of the method of manufacture is pouring the mixed solution slowly in a continuous stream into a cryogenic bath wherein frozen particles of the mixture result. The frozen individual particles are then subjected to the sublimation

    Field theory of bi- and tetracritical points: Relaxational dynamics

    Full text link
    We calculate the relaxational dynamical critical behavior of systems of O(n)O(n)O(n_\|)\oplus O(n_\perp) symmetry by renormalization group method within the minimal subtraction scheme in two loop order. The three different bicritical static universality classes previously found for such systems correspond to three different dynamical universality classes within the static borderlines. The Heisenberg and the biconical fixed point lead to strong dynamic scaling whereas in the region of stability of the decoupled fixed point weak dynamic scaling holds. Due to the neighborhood of the stability border between the strong and the weak scaling dynamic fixed point corresponding to the static biconical and the decoupled fixed point a very small dynamic transient exponent, of ωvB=0.0044\omega_v^{{\cal B}}=0.0044, is present in the dynamics for the physically important case n=1n_\|=1 and n=2n_\perp=2 in d=3d=3.Comment: 8 figure

    On the approach to equilibrium of an Hamiltonian chain of anharmonic oscillators

    Full text link
    In this note we study the approach to equilibrium of a chain of anharmonic oscillators. We find indications that a sufficiently large system always relaxes to the usual equilibrium distribution. There is no sign of an ergodicity threshold. The time however to arrive to equilibrium diverges when g0g \to 0, gg being the anharmonicity.Comment: 8 pages, 5 figure

    Automated Expected Amortised Cost Analysis of Probabilistic Data Structures

    Get PDF
    In this paper, we present the first fully-automated expected amortised cost analysis of self-adjusting data structures, that is, of randomised splay trees, randomised splay heaps and randomised meldable heaps, which so far have only (semi-) manually been analysed in the literature. Our analysis is stated as a type-and-effect system for a first-order functional programming language with support for sampling over discrete distributions, non-deterministic choice and a ticking operator. The latter allows for the specification of fine-grained cost models. We state two soundness theorems based on two different -- but strongly related -- typing rules of ticking, which account differently for the cost of non-terminating computations. Finally we provide a prototype implementation able to fully automatically analyse the aforementioned case studies.Comment: 39 page

    Field theory of bicritical and tetracritical points. III. Relaxational dynamics including conservation of magnetization (Model C)

    Full text link
    We calculate the relaxational dynamical critical behavior of systems of O(n)O(n)O(n_\|)\oplus O(n_\perp) symmetry including conservation of magnetization by renormalization group (RG) theory within the minimal subtraction scheme in two loop order. Within the stability region of the Heisenberg fixed point and the biconical fixed point strong dynamical scaling holds with the asymptotic dynamical critical exponent z=2ϕ/ν1z=2\phi/\nu-1 where ϕ\phi is the crossover exponent and ν\nu the exponent of the correlation length. The critical dynamics at n=1n_\|=1 and n=2n_\perp=2 is governed by a small dynamical transient exponent leading to nonuniversal nonasymptotic dynamical behavior. This may be seen e.g. in the temperature dependence of the magnetic transport coefficients.Comment: 6 figure

    Aluminum arsenide cleaved-edge overgrown quantum wires

    Full text link
    We report conductance measurements in quantum wires made of aluminum arsenide, a heavy-mass, multi-valley one-dimensional (1D) system. Zero-bias conductance steps are observed as the electron density in the wire is lowered, with additional steps observable upon applying a finite dc bias. We attribute these steps to depopulation of successive 1D subbands. The quantum conductance is substantially reduced with respect to the anticipated value for a spin- and valley-degenerate 1D system. This reduction is consistent with disorder-induced, intra-wire backscattering which suppresses the transmission of 1D modes. Calculations are presented to demonstrate the role of strain in the 1D states of this cleaved-edge structure.Comment: Submitted to Applied Physics Letter

    VLTI/PIONIER images the Achernar disk swell

    Full text link
    Context. The mechanism of disk formation around fast-rotating Be stars is not well understood. In particular, it is not clear which mechanisms operate, in addition to fast rotation, to produce the observed variable ejection of matter. The star Achernar is a privileged laboratory to probe these additional mechanisms because it is close, presents B-Be phase variations on timescales ranging from 6 yr to 15 yr, a companion star was discovered around it, and probably presents a polar wind or jet. Aims. Despite all these previous studies, the disk around Achernar was never directly imaged. Therefore we seek to produce an image of the photosphere and close environment of the star. Methods. We used infrared long-baseline interferometry with the PIONIER/VLTI instrument to produce reconstructed images of the photosphere and close environment of the star over four years of observations. To study the disk formation, we compared the observations and reconstructed images to previously computed models of both the stellar photosphere alone (normal B phase) and the star presenting a circumstellar disk (Be phase). Results. The observations taken in 2011 and 2012, during the quiescent phase of Achernar, do not exhibit a disk at the detection limit of the instrument. In 2014, on the other hand, a disk was already formed and our reconstructed image reveals an extended H-band continuum excess flux. Our results from interferometric imaging are also supported by several H-alpha line profiles showing that Achernar started an emission-line phase sometime in the beginning of 2013. The analysis of our reconstructed images shows that the 2014 near-IR flux extends to 1.7 - 2.3 equatorial radii. Our model-independent size estimation of the H-band continuum contribution is compatible with the presence of a circumstellar disk, which is in good agreement with predictions from Be-disk models

    Donor binding energy and thermally activated persistent photoconductivity in high mobility (001) AlAs quantum wells

    Full text link
    A doping series of AlAs (001) quantum wells with Si delta-modulation doping on both sides reveals different dark and post-illumination saturation densities, as well as temperature dependent photoconductivity. The lower dark two-dimensional electron density saturation is explained assuming deep binding energy of Delta_DK = 65.2 meV for Si-donors in the dark. Persistent photoconductivity (PPC) is observed upon illumination, with higher saturation density indicating shallow post-illumination donor binding energy. The photoconductivity is thermally activated, with 4 K illumination requiring post-illumination annealing to T = 30 K to saturate the PPC. Dark and post-illumination doping efficiencies are reported.Comment: The values of binding energy changed from previous versions because of a better understanding for the dielectric permittivity. Also, the Gamma - X donor states are better explaine

    Strong-coupling behaviour in discrete Kardar-Parisi-Zhang equations

    Full text link
    We present a systematic discretization scheme for the Kardar-Parisi-Zhang (KPZ) equation, which correctly captures the strong-coupling properties of the continuum model. In particular we show that the scheme contains no finite-time singularities in contrast to conventional schemes. The implications of these results to i) previous numerical integration of the KPZ equation, and ii) the non-trivial diversity of universality classes for discrete models of `KPZ-type' are examined. The new scheme makes the strong-coupling physics of the KPZ equation more transparent than the original continuum version and allows the possibility of building new continuum models which may be easier to analyse in the strong-coupling regime.Comment: 21 pages, revtex, 2 figures, submitted to J. Phys.

    Equilibria of `Discrete' Integrable Systems and Deformations of Classical Orthogonal Polynomials

    Full text link
    The Ruijsenaars-Schneider systems are `discrete' version of the Calogero-Moser (C-M) systems in the sense that the momentum operator p appears in the Hamiltonians as a polynomial in e^{\pm\beta' p} (\beta' is a deformation parameter) instead of an ordinary polynomial in p in the hierarchies of C-M systems. We determine the polynomials describing the equilibrium positions of the rational and trigonometric Ruijsenaars-Schneider systems based on classical root systems. These are deformation of the classical orthogonal polynomials, the Hermite, Laguerre and Jacobi polynomials which describe the equilibrium positions of the corresponding Calogero and Sutherland systems. The orthogonality of the original polynomials is inherited by the deformed ones which satisfy three-term recurrence and certain functional equations. The latter reduce to the celebrated second order differential equations satisfied by the classical orthogonal polynomials.Comment: 45 pages. A few typos in section 6 are correcte
    corecore