A doping series of AlAs (001) quantum wells with Si delta-modulation doping
on both sides reveals different dark and post-illumination saturation
densities, as well as temperature dependent photoconductivity. The lower dark
two-dimensional electron density saturation is explained assuming deep binding
energy of Delta_DK = 65.2 meV for Si-donors in the dark. Persistent
photoconductivity (PPC) is observed upon illumination, with higher saturation
density indicating shallow post-illumination donor binding energy. The
photoconductivity is thermally activated, with 4 K illumination requiring
post-illumination annealing to T = 30 K to saturate the PPC. Dark and
post-illumination doping efficiencies are reported.Comment: The values of binding energy changed from previous versions because
of a better understanding for the dielectric permittivity. Also, the Gamma -
X donor states are better explaine