60 research outputs found

    Seroprevalence of Toxoplasma gondii in burrowing bettongs (Bettongia lesueur): a comparison of cat-free and cat-exposed populations

    Get PDF
    Toxoplasma gondii is a ubiquitous protozoan transmitted by felids and infection, morbidity, and mortality occur in numerous marsupial species. This study explores the relationship between cat exposure and Toxoplasma in burrowing bettongs (Bettongia lesueur) in the Arid Recovery Reserve (ARR), South Australia. We estimated seroprevalence, using a modified agglutination test for T. gondii-specific immunoglobulins, in cat-free and cat-exposed bettong populations. Tissue samples collected opportunistically from bettong carcasses and from cats within and around the reserve were screened for T. gondii DNA using multiplex real-time polymerase chain reaction (M-qPCR). Two cats trapped inside the ARR tested positive (50.0%; 95% CI: 15.0–85.0%). All bettongs tested from the cat-free (n = 48) and cat-exposed (n = 19) exclosures were seronegative (95% CI: 0–7.41% and 0–16.82% respectively). We found no evidence of fatal toxoplasmosis, with all bettong carcasses negative on M-qPCR (n = 11). We propose that T. gondii was not detected in bettongs coexisting with cats primarily due to low exposure of bettongs at the time of sampling, possibly due to poor oocyst viability in arid conditions or low shedding by cats. Ongoing screening throughout high and low rainfall years should be conducted to better establish the risk of Toxoplasma to bettongs in the ARR

    Long-term genetic consequences of mammal reintroductions into an Australian conservation reserve

    Get PDF
    Available online 05 January 2018Reintroduction programs aim to restore self-sustaining populations of threatened species to their historic range. However, demographic restoration may not reflect genetic restoration, which is necessary for the long-term persistence of populations. Four threatened Australian mammals, the greater stick-nest rat (Leporillus conditor), greater bilby (Macrotis lagotis), burrowing bettong (Bettongia lesueur) and western barred bandicoot (Perameles bougainville), were reintroduced at Arid Recovery Reserve in northern South Australia over the last 18 years. These reintroductions have been deemed successful based on population growth and persistence, however the genetic consequences of the reintroductions are not known. We generated large single nucleotide polymorphism (SNP) datasets for each species currently at Arid Recovery and compared them to samples collected from founders. We found that average genetic diversity in all populations at the Arid Recovery Reserve are close to, or exceeding, the levels measured in the founders. Increased genetic diversity in two species was achieved by admixing slightly diverged and inbred source populations. Our results suggest that genetic diversity in translocated populations can be improved or maintained over relatively long time frames, even in small conservation reserves, and highlight the power of admixture as a tool for conservation management.Lauren C. White, Katherine E. Moseby, Vicki A. Thomson, Stephen C. Donnellan, Jeremy J. Austi

    Deconstructing compassionate conservation

    Get PDF
    Compassionate conservation focuses on 4 tenets: first, do no harm; individuals matter; inclusivity of individual animals; and peaceful coexistence between humans and animals. Recently, compassionate conservation has been promoted as an alternative to conventional conservation philosophy. We believe examples presented by compassionate conservationists are deliberately or arbitrarily chosen to focus on mammals; inherently not compassionate; and offer ineffective conservation solutions. Compassionate conservation arbitrarily focuses on charismatic species, notably large predators and megaherbivores. The philosophy is not compassionate when it leaves invasive predators in the environment to cause harm to vastly more individuals of native species or uses the fear of harm by apex predators to terrorize mesopredators. Hindering the control of exotic species (megafauna, predators) in situ will not improve the conservation condition of the majority of biodiversity. The positions taken by so-called compassionate conservationists on particular species and on conservation actions could be extended to hinder other forms of conservation, including translocations, conservation fencing, and fertility control. Animal welfare is incredibly important to conservation, but ironically compassionate conservation does not offer the best welfare outcomes to animals and is often ineffective in achieving conservation goals. Consequently, compassionate conservation may threaten public and governmental support for conservation because of the limited understanding of conservation problems by the general public

    Intended Consequences Statement in Conservation Science and Practice

    Get PDF
    As the biodiversity crisis accelerates, the stakes are higher for threatened plants and animals. Rebuilding the health of our planet will require addressing underlying threats at many scales, including habitat loss and climate change. Conservation interventions such as habitat protection, management, restoration, predator control, trans location, genetic rescue, and biological control have the potential to help threatened or endangered species avert extinction. These existing, well-tested methods can be complemented and augmented by more frequent and faster adoption of new technologies, such as powerful new genetic tools. In addition, synthetic biology might offer solutions to currently intractable conservation problems. We believe that conservation needs to be bold and clear-eyed in this moment of great urgency

    Improving mammalian reintroduction success in the Australian arid zone.

    Get PDF
    The Australian arid zone has the highest recent mammal extinction rate in the world with most species in the critical weight range of 35 g to 5.5 kg now regionally or globally extinct. Reversing arid zone mammal decline has become a major focus for conservation organizations and reintroduction programs are a common tool in species recovery. Unfortunately, reintroduction success in Australia is low and predation from introduced cats and foxes is commonly cited as the cause of reintroduction failure. In this thesis, I aimed to improve reintroduction success in the arid zone by exploring predation, release protocols and post release abundance at the Arid Recovery Reserve in northern South Australia. Firstly, I attempted to reintroduce threatened mammal species into both a predator free area and one where predators were controlled. Results suggested that successful reintroductions only occurred when cats and foxes were excluded. I then tested different predator reduction strategies to determine if reintroduction success could be improved, including aerial baiting, strategic bait placement and the use of a native top-order predator. Although the use of dingoes to control foxes and cats showed promise, I was unable to improve reintroduction success using poison baiting as it did not significantly reduce feral cat abundance. I investigated the role of release strategies on reintroduction success and conducted predator avoidance training, soft and hard releases and using captive versus wild stock. Predator avoidance training did not assist long term reintroduction success of the bilby but some behavioural differences were detected. Results suggest that Australian arid zone species may be able to learn predator avoidance behavior but this may not necessarily translate into improved reintroduction outcomes. The use of soft and hard releases and captive and wild stock had little effect on reintroduction success when cats and foxes were excluded. Interspecific differences in post-release mortality and behaviour indicated that soft releases may be useful at unrestricted release sites, in situations of high predation risk and where social, sedentary species which invest heavily in their shelters are being released. Finally, I analysed long term monitoring data for four reintroduced threatened species to determine whether factors such as rainfall, time since release or temperature influenced postrelease population fluctuations. Factors significantly influencing abundance included the Indian Ocean Dipole and temperature. Time since release was still the most important factor influencing abundance even 10 years after release indicating that reintroduced populations may not stabilize for decades and long term monitoring is essential. Regardless of reintroduction protocols, new methods of broadscale cat control are required before broadscale reintroduction success can be improved in the Australian arid zone. Present control methods are insufficient to enable successful reintroductions of cat-sensitive mammal species without exclusion fencing. However, exclosures are relatively small and expensive, and can create problems such as overstocking. Future arid zone reintroductions should focus on broadscale reintroductions without fences to ensure widespread recovery but this will require the development of improved cat control methods. Species-specific predator thresholds are also needed to trigger management actions and improve the predictability of reintroduction outcomes.Thesis (Ph.D.) -- University of Adelaide, School of Earth and Environmental Sciences, 201

    Vertebrates of Tetepare Island, Solomon Islands

    Get PDF
    v. ill. 23 cm.QuarterlyTetepare is the largest unlogged and uninhabited lowland rain-forest island in the South Pacific and is being managed primarily for conservation. An inventory was conducted, and 25 reptile, 4 frog, 76 bird, and 13 mammal species were recorded from Tetepare, including several birds and turtles of international conservation significance. Their relative abundance and local names were collected to assist landowners in attracting researchers and ecotourists and also to develop a conservation management plan for Tetepare

    Data for Ross et al

    No full text
    Data collected in the field at Arid Recovery Reserve in 2017. This data concerns bilby emergence time, pen behaviour, burrow use, and survival
    corecore