9 research outputs found

    A host signature based on TRAIL, IP-10, and CRP for reducing antibiotic overuse in children by differentiating bacterial from viral infections: a prospective, multicentre cohort study

    Get PDF
    Objectives: Identifying infection aetiology is essential for appropriate antibiotic use. Previous studies have shown that a host-protein signature consisting of TNF-related apoptosis-induced ligand (TRAIL), interferon-γ-induced protein-10 (IP-10), and C-reactive protein (CRP) can accurately differentiate bacterial from viral infections. Methods: This prospective, multicentre cohort study, entitled AutoPilot-Dx, aimed to validate signature performance and to estimate its potential impact on antibiotic use across a broad paediatric population (>90 days to 18 years) with respiratory tract infections, or fever without source, at emergency departments and wards in Italy and Germany. Infection aetiology was adjudicated by experts based on clinical and laboratory investigations, including multiplex PCR and follow-up data. Results: In total, 1140 patients were recruited (February 2017–December 2018), of which 1008 met the eligibility criteria (mean age 3.5 years, 41.9% female). Viral and bacterial infections were adjudicated for 628 (85.8%) and 104 (14.2%) children, respectively; 276 patients were assigned an indeterminate reference standard outcome. For the 732 children with reference standard aetiology, the signature discriminated bacterial from viral infections with a sensitivity of 93.7% (95%CI 88.7–98.7), a specificity of 94.2% (92.2–96.1), positive predictive value of 73.0% (65.0–81.0), and negative predictive value of 98.9% (98.0–99.8); in 9.8% the test results were equivocal. The signature performed consistently across different patient subgroups and detected bacterial immune responses in viral PCR-positive patients. Conclusions: The findings validate the high diagnostic performance of the TRAIL/IP-10/CRP signature in a broad paediatric cohort, and support its potential to reduce antibiotic overuse in children with viral infections

    (Bio)electrochemical ammonia recovery: progress and perspectives

    Get PDF
    In recent years, (bio)electrochemical systems (B)ES have emerged as an energy efficient alternative for the recovery of TAN (total ammonia nitrogen, including ammonia and ammonium) from wastewater. In these systems, TAN is removed or concentrated from the wastewater under the influence of an electrical current and transported to the cathode. Subsequently, it can be removed or recovered through stripping, chemisorption, or forward osmosis. A crucial parameter that determines the energy required to recover TAN is the load ratio: the ratio between TAN loading and applied current. For electrochemical TAN recovery, an energy input is required, while in bioelectrochemical recovery, electric energy can be recovered together with TAN. Bioelectrochemical recovery relies on the microbial oxidation of COD for the production of electrons, which drives TAN transport. Here, the state-of-the-art of (bio)electrochemical TAN recovery is described, the performance of (B)ES for TAN recovery is analyzed, the potential of different wastewaters for BES-based TAN recovery is evaluated, the microorganisms found on bioanodes that treat wastewater high in TAN are reported, and the toxic effect of the typical conditions in such systems (e.g., high pH, TAN, and salt concentrations) are described. For future application, toxicity effects for electrochemically active bacteria need better understanding, and the technologies need to be demonstrated on larger scale.This study was funded by the European Union’s Horizon 2020 research and innovation program under the Marie Skłodowska-Curie grant agreement no. 665874.info:eu-repo/semantics/publishedVersio

    Ephrin-B2 reverse signaling regulates progression and lymph node metastasis of oral squamous cell carcinoma.

    No full text
    Oral squamous cell carcinoma (OSCC) is a common malignant tumor of the head and neck and frequently metastasizes to cervical lymph nodes. Aggressive local invasion and metastasis of OSCC are significant factors for poor prognosis. In this study, we investigated whether ephrin-B2 expressed in OSCC contributed to tumor progression and lymph node metastasis. Clinical specimens from patients with OSCC had robust ephrin-B2-positive tumor cells and ephrin-B2 protein level was associated with clinical stage, lymph node metastasis, and poor survival outcomes. We also determined that ephrin-B2 protein level was increased in OSCC cell lines compared to normal human oral keratinocytes and that its levels were associated with the migratory and invasive potential of OSCC cell lines. Transfection of an EFNB2-specific small interfering RNA (siRNA) into SAS-L1 cells significantly reduced proliferation, attachment, migration, and invasion through phosphorylation of the epidermal growth factor receptor, FAK, ERK1/2, p38, AKT, and JNK1/2 pathways. Furthermore, knockdown of EFNB2 significantly suppressed adhesion and transmigration of SAS-L1 cells toward human lymphatic endothelial cells. In addition, the growth rate of tumor xenografts and cervical lymph node metastases of OSCC were suppressed by local injection of EFNB2 siRNA. These results suggest that ephrin-B2 overexpression and activation of the ephrin-B2 reverse signaling pathway in tumor microenvironment in OSCC facilitates progression and lymph node metastasis via enhancement of malignant potential and interaction with surrounding cells

    Understanding biomass recalcitrance in grasses for their efficient utilization as biorefinery feedstock

    No full text
    corecore