110 research outputs found

    The Use of a Quantitative Fusion Assay to Evaluate HN–Receptor Interaction for Human Parainfluenza Virus Type 3

    Get PDF
    AbstractSialic acid is the receptor determinant for the human parainfluenza virus type 3 (HPF3) hemagglutinin–neuraminidase (HN) glycoprotein, the molecule responsible for binding of the virus to cell surfaces. In order for the fusion protein (F) of HPF3 to promote membrane fusion, HN must interact with its receptor. In addition to its role in receptor binding and fusion promotion, the HPF3 HN molecule contains receptor-destroying (sialidase) activity. The putative active sites are in the extracellular domain of this type II integral membrane protein. However, HN is not available in crystalline form; the exact locations of these sites, and the structural requirements for binding to the cellular receptor, which has not yet been isolated, are unknown. Nor have small molecular synthetic inhibitors of attachment or fusion that would provide insight into these processes been identified. The strategy in the present study was to develop an assay system that would provide a measure of a specific step in the viral cycle—functional interaction between viral glycoproteins and the cell during attachment and fusion—and serve to screen a variety of substances for inhibitory potential. The assay is based on our previous finding that CV-1 cells persistently infected (p.i.) with HPF3 do not fuse with one another but that the addition of uninfected CV-1 cells, supplying the critical sialic acid containing receptor molecules that bind HN, results in rapid fusion. In the present assay two HeLa cell types were used: we persistently infected HeLa-LTR-βgal cells, assessed their fusion with uninfected HeLa-tat cells, and then quantitated the β-galactosidase (βgal) produced as a result of this fusion. The analog α-2-S-methyl-5-N-thioacetylneuraminic acid (α-Neu5thioAc2SMe) interfered with fusion, decreasing βgal production by 84% at 50 mM and by 24% at 25 mM. In beginning to extend our studies to different types of molecules, we tested an unsaturated derivative of sialic acid, 2,3-dehydro-2-deoxy-n-acetyl neuraminic acid (DANA), which is known to inhibit influenza neuraminidase by virtue of being a transition-state analog. We found that 10 mM DANA inhibited neuraminidase activity in HPF3 viral preparations. More significantly, this compound was active in our assay of HN–receptor interaction; 10 mM DANA completely blocked fusion and βgal production, and hemadsorption inhibition by DANA suggested that DANA blocks attachment. In plaque reduction assays performed with the compounds, the active analog α-Neu5thioAc2SMe reduced plaque formation by 50% at a 50 mM concentration; DANA caused a 90% inhibition in the plaque reduction assay at a concentration of 25 mM. Our results indicate that specific sialic acid analogs that mimic the cellular receptor determinant of HPF3 can block virus cell interaction and that an unsaturated n-acetyl-neuraminic acid derivative with affinity to the HN site responsible for neuraminidase activity also interferes with HN–receptor binding. Strategies suggested by these findings are now being pursued to obtain information regarding the relative locations of the active sites of HN and to further elucidate the relationship between the receptor-binding and receptor-destroying activities of HN during the viral life cycle. The quantitative assay that we describe is of immediate applicability to large-scale screening for potential inhibitors of HPF3 infection in vivo

    Antiviral activity of gliotoxin, gentian violet and brilliant green against Nipah and Hendra virus in vitro

    Get PDF
    Background: Using a recently described monolayer assay amenable to high throughput screening format for the identification of potential Nipah virus and Hendra virus antivirals, we have partially screened a low molecular weight compound library (8,000 compounds) directly against live virus infection and identified twenty eight promising lead molecules. Initial single blind screens were conducted with 10 M compound in triplicate with a minimum efficacy of 90% required for lead selection. Lead compounds were then further characterised to determine the median efficacy (IC), cytotoxicity (CC) and the in vitro therapeutic index in live virus and pseudotype assay formats. Results: While a number of leads were identified, the current work describes three commercially available compounds: brilliant green, gentian violet and gliotoxin, identified as having potent antiviral activity against Nipah and Hendra virus. Similar efficacy was observed against pseudotyped Nipah and Hendra virus, vesicular stomatitis virus and human parainfluenza virus type 3 while only gliotoxin inhibited an influenza A virus suggesting a non-specific, broad spectrum activity for this compound. Conclusion: All three of these compounds have been used previously for various aspects of anti-bacterial and anti-fungal therapy and the current results suggest that while unsuitable for internal administration, they may be amenable to topical antiviral applications, or as disinfectants and provide excellent positive controls for future studies

    Synthetic Protocells Interact with Viral Nanomachinery and Inactivate Pathogenic Human Virus

    Get PDF
    We present a new antiviral strategy and research tool that could be applied to a wide range of enveloped viruses that infect human beings via membrane fusion. We test this strategy on two emerging zoonotic henipaviruses that cause fatal encephalitis in humans, Nipah (NiV) and Hendra (HeV) viruses. In the new approach, artificial cell-like particles (protocells) presenting membrane receptors in a biomimetic manner were developed and found to attract and inactivate henipavirus envelope glycoprotein pseudovirus particles, preventing infection. The protocells do not accumulate virus during the inactivation process. The use of protocells that interact with, but do not accumulate, viruses may provide significant advantages over current antiviral drugs, and this general approach may have wide potential for antiviral development

    Absence of COVID-19-associated changes in plasma coagulation proteins and pulmonary thrombosis in the ferret model

    Get PDF
    BACKGROUND: Many patients who are diagnosed with coronavirus disease 2019 (COVID-19) suffer from venous thromboembolic complications despite the use of stringent anticoagulant prophylaxis. Studies on the exact mechanism(s) underlying thrombosis in COVID-19 are limited as animal models commonly used to study venous thrombosis pathophysiology (i.e. rats and mice) are naturally not susceptible to Severe Acute Respiratory Syndrome Coronavirus 2 (SARS-CoV-2). Ferrets are susceptible to SARS-CoV-2 infection, successfully used to study virus transmission, and have been previously used to study activation of coagulation and thrombosis during influenza virus infection. OBJECTIVES: This study aimed to explore the use of (heat-inactivated) plasma and lung material from SARS-CoV-2-inoculated ferrets studying COVID-19-associated changes in coagulation and thrombosis. MATERIAL AND METHODS: Histology and longitudinal plasma profiling using mass spectrometry-based proteomics approach was performed. RESULTS: Lungs of ferrets inoculated intranasally with SARS-CoV-2 demonstrated alveolar septa that were mildly expanded by macrophages, and diffuse interstitial histiocytic pneumonia. However, no macroscopical or microscopical evidence of vascular thrombosis in the lungs of SARS-CoV-2-inoculated ferrets was found. Longitudinal plasma profiling revealed minor differences in plasma protein profiles in SARS-CoV-2-inoculated ferrets up to 2 weeks post-infection. The majority of plasma coagulation factors were stable and demonstrated a low coefficient of variation. CONCLUSIONS: We conclude that while ferrets are an essential and well-suited animal model to study SARS-CoV-2 transmission, their use to study SARS-CoV-2-related changes relevant to thrombotic disease is limited

    Viral Entry Properties Required for Fitness in Humans Are Lost through Rapid Genomic Change during Viral Isolation

    Get PDF
    Human parainfluenza viruses cause a large burden of human respiratory illness. While much research relies upon viruses grown in cultured immortalized cells, human parainfluenza virus 3 (HPIV-3) evolves in culture. Cultured viruses differ in their properties compared to clinical strains. We present a genome-wide survey of HPIV-3 adaptations to culture using metagenomic next-generation sequencing of matched pairs of clinical samples and primary culture isolates (zero passage virus). Nonsynonymous changes arose during primary viral isolation, almost entirely in the genes encoding the two surface glycoproteins—the receptor binding protein hemagglutinin-neuraminidase (HN) or the fusion protein (F). We recovered genomes from 95 HPIV-3 primary culture isolates and 23 HPIV-3 strains directly from clinical samples. HN mutations arising during primary viral isolation resulted in substitutions at HN’s dimerization/F-interaction site, a site critical for activation of viral fusion. Alterations in HN dimer interface residues known to favor infection in culture occurred within 4 days (H552 and N556). A novel cluster of residues at a different face of the HN dimer interface emerged (P241 and R242) and imply a role in HPIV-3-mediated fusion. Functional characterization of these culture-associated HN mutations in a clinical isolate background revealed acquisition of the fusogenic phenotype associated with cultured HPIV-3; the HN-F complex showed enhanced fusion and decreased receptor-cleaving activity. These results utilize a method for identifying genome-wide changes associated with brief adaptation to culture to highlight the notion that even brief exposure to immortalized cells may affect key viral properties and underscore the balance of features of the HN-F complex required for fitness by circulating viruses. IMPORTANCE Human parainfluenza virus 3 is an important cause of morbidity and mortality among infants, the immunocompromised, and the elderly. Using deep genomic sequencing of HPIV-3-positive clinical material and its subsequent viral isolate, we discover a number of known and novel coding mutations in the main HPIV-3 attachment protein HN during brief exposure to immortalized cells. These mutations significantly alter function of the fusion complex, increasing fusion promotion by HN as well as generally decreasing neuraminidase activity and increasing HN-receptor engagement. These results show that viruses may evolve rapidly in culture even during primary isolation of the virus and before the first passage and reveal features of fitness for humans that are obscured by rapid adaptation to laboratory conditions

    Identification of a PA-Binding Peptide with Inhibitory Activity against Influenza A and B Virus Replication

    Get PDF
    There is an urgent need for new drugs against influenza type A and B viruses due to incomplete protection by vaccines and the emergence of resistance to current antivirals. The influenza virus polymerase complex, consisting of the PB1, PB2 and PA subunits, represents a promising target for the development of new drugs. We have previously demonstrated the feasibility of targeting the protein-protein interaction domain between the PB1 and PA subunits of the polymerase complex of influenza A virus using a small peptide derived from the PA-binding domain of PB1. However, this influenza A virus-derived peptide did not affect influenza B virus polymerase activity. Here we report that the PA-binding domain of the polymerase subunit PB1 of influenza A and B viruses is highly conserved and that mutual amino acid exchange shows that they cannot be functionally exchanged with each other. Based on phylogenetic analysis and a novel biochemical ELISA-based screening approach, we were able to identify an influenza A-derived peptide with a single influenza B-specific amino acid substitution which efficiently binds to PA of both virus types. This dual-binding peptide blocked the viral polymerase activity and growth of both virus types. Our findings provide proof of principle that protein-protein interaction inhibitors can be generated against influenza A and B viruses. Furthermore, this dual-binding peptide, combined with our novel screening method, is a promising platform to identify new antiviral lead compounds

    Inhibition of Nipah Virus Infection In Vivo: Targeting an Early Stage of Paramyxovirus Fusion Activation during Viral Entry

    Get PDF
    In the paramyxovirus cell entry process, receptor binding triggers conformational changes in the fusion protein (F) leading to viral and cellular membrane fusion. Peptides derived from C-terminal heptad repeat (HRC) regions in F have been shown to inhibit fusion by preventing formation of the fusogenic six-helix bundle. We recently showed that the addition of a cholesterol group to HRC peptides active against Nipah virus targets these peptides to the membrane where fusion occurs, dramatically increasing their antiviral effect. In this work, we report that unlike the untagged HRC peptides, which bind to the postulated extended intermediate state bridging the viral and cell membranes, the cholesterol tagged HRC-derived peptides interact with F before the fusion peptide inserts into the target cell membrane, thus capturing an earlier stage in the F-activation process. Furthermore, we show that cholesterol tagging renders these peptides active in vivo: the cholesterol-tagged peptides cross the blood brain barrier, and effectively prevent and treat in an established animal model what would otherwise be fatal Nipah virus encephalitis. The in vivo efficacy of cholesterol-tagged peptides, and in particular their ability to penetrate the CNS, suggests that they are promising candidates for the prevention or therapy of infection by Nipah and other lethal paramyxoviruses

    Rapid Screening for Entry Inhibitors of Highly Pathogenic Viruses under Low-Level Biocontainment

    Get PDF
    Emerging viruses including Nipah, Hendra, Lujo, and Junin viruses have enormous potential to spread rapidly. Nipah virus, after emerging as a zoonosis, has also evolved the capacity for human-to-human transmission. Most of the diseases caused by these pathogens are untreatable and require high biocontainment conditions. Universal methods for rapidly identifying and screening candidate antivirals are urgently needed. We have developed a modular antiviral platform strategy that relies on simple bioinformatic and genetic information about each pathogen. Central to this platform is the use of envelope glycoprotein cDNAs to establish multi-cycle replication systems under BSL2 conditions for viral pathogens that normally require BSL3 and BSL4 facilities. We generated monoclonal antibodies against Nipah G by cDNA immunization in rats, and we showed that these antibodies neutralize both Nipah and Hendra live viruses. We then used these effective Henipavirus inhibitors to validate our screening strategy. Our proposed strategy should contribute to the response capability for emerging infectious diseases, providing a way to initiate antiviral development immediately upon identifying novel viruses

    A 'small-world-like' model for comparing interventions aimed at preventing and controlling influenza pandemics

    Get PDF
    BACKGROUND: With an influenza pandemic seemingly imminent, we constructed a model simulating the spread of influenza within the community, in order to test the impact of various interventions. METHODS: The model includes an individual level, in which the risk of influenza virus infection and the dynamics of viral shedding are simulated according to age, treatment, and vaccination status; and a community level, in which meetings between individuals are simulated on randomly generated graphs. We used data on real pandemics to calibrate some parameters of the model. The reference scenario assumes no vaccination, no use of antiviral drugs, and no preexisting herd immunity. We explored the impact of interventions such as vaccination, treatment/prophylaxis with neuraminidase inhibitors, quarantine, and closure of schools or workplaces. RESULTS: In the reference scenario, 57% of realizations lead to an explosive outbreak, lasting a mean of 82 days (standard deviation (SD) 12 days) and affecting 46.8% of the population on average. Interventions aimed at reducing the number of meetings, combined with measures reducing individual transmissibility, would be partly effective: coverage of 70% of affected households, with treatment of the index patient, prophylaxis of household contacts, and confinement to home of all household members, would reduce the probability of an outbreak by 52%, and the remaining outbreaks would be limited to 17% of the population (range 0.8%–25%). Reactive vaccination of 70% of the susceptible population would significantly reduce the frequency, size, and mean duration of outbreaks, but the benefit would depend markedly on the interval between identification of the first case and the beginning of mass vaccination. The epidemic would affect 4% of the population if vaccination started immediately, 17% if there was a 14-day delay, and 36% if there was a 28-day delay. Closing schools when the number of infections in the community exceeded 50 would be very effective, limiting the size of outbreaks to 10% of the population (range 0.9%–22%). CONCLUSION: This flexible tool can help to determine the interventions most likely to contain an influenza pandemic. These results support the stockpiling of antiviral drugs and accelerated vaccine development
    • …
    corecore