31 research outputs found

    Calcium Handling in Human Induced Pluripotent Stem Cell Derived Cardiomyocytes

    Get PDF
    BACKGROUND: The ability to establish human induced pluripotent stem cells (hiPSCs) by reprogramming of adult fibroblasts and to coax their differentiation into cardiomyocytes opens unique opportunities for cardiovascular regenerative and personalized medicine. In the current study, we investigated the Ca(2+)-handling properties of hiPSCs derived-cardiomyocytes (hiPSC-CMs). METHODOLOGY/PRINCIPAL FINDINGS: RT-PCR and immunocytochemistry experiments identified the expression of key Ca(2+)-handling proteins. Detailed laser confocal Ca(2+) imaging demonstrated spontaneous whole-cell [Ca(2+)](i) transients. These transients required Ca(2+) influx via L-type Ca(2+) channels, as demonstrated by their elimination in the absence of extracellular Ca(2+) or by administration of the L-type Ca(2+) channel blocker nifedipine. The presence of a functional ryanodine receptor (RyR)-mediated sarcoplasmic reticulum (SR) Ca(2+) store, contributing to [Ca(2+)](i) transients, was established by application of caffeine (triggering a rapid increase in cytosolic Ca(2+)) and ryanodine (decreasing [Ca(2+)](i)). Similarly, the importance of Ca(2+) reuptake into the SR via the SR Ca(2+) ATPase (SERCA) pump was demonstrated by the inhibiting effect of its blocker (thapsigargin), which led to [Ca(2+)](i) transients elimination. Finally, the presence of an IP3-releasable Ca(2+) pool in hiPSC-CMs and its contribution to whole-cell [Ca(2+)](i) transients was demonstrated by the inhibitory effects induced by the IP3-receptor blocker 2-Aminoethoxydiphenyl borate (2-APB) and the phospholipase C inhibitor U73122. CONCLUSIONS/SIGNIFICANCE: Our study establishes the presence of a functional, SERCA-sequestering, RyR-mediated SR Ca(2+) store in hiPSC-CMs. Furthermore, it demonstrates the dependency of whole-cell [Ca(2+)](i) transients in hiPSC-CMs on both sarcolemmal Ca(2+) entry via L-type Ca(2+) channels and intracellular store Ca(2+) release

    Tracking Signals of Change in Mediterranean Fish Diversity Based on Local Ecological Knowledge

    Get PDF
    One of the expected effects of global change is increased variability in the abundance and distribution of living organisms, but information at the appropriate temporal and geographical scales is often lacking to observe these patterns. Here we use local knowledge as an alternative information source to study some emerging changes in Mediterranean fish diversity. A pilot study of thirty-two fishermen was conducted in 2009 from four Mediterranean locations along a south-north gradient. Semi-quantitative survey information on changes in species abundance was recorded by year and suggests that 59 fish species belonging to 35 families have experienced changes in their abundance. We distinguished species that increased from species that decreased or fluctuated. Multivariate analysis revealed significant differences between these three groups of species, as well as significant variation between the study locations. A trend for thermophilic taxa to increase was recorded at all the study locations. The Carangidae and the Sphyraenidae families typically were found to increase over time, while Scombridae and Clupeidae were generally identified as decreasing and Fistularidae and Scaridae appeared to fluctuate in abundance. Our initial findings strongly suggest the northward expansion of termophilic species whose occurrence in the northern Mediterranean has only been noted previously by occasional records in the scientific literature

    The Italian tremor Network (TITAN): rationale, design and preliminary findings.

    Get PDF
    INTRODUCTION: The recently released classification has revised the nosology of tremor, defining essential tremor (ET) as a syndrome and fueling an enlightened debate about some newly conceptualized entities such as ET-plus. As a result, precise information of demographics, clinical features, and about the natural history of these conditions are lacking. METHODS: The ITAlian tremor Network (TITAN) is a multicenter data collection platform, the aim of which is to prospectively assess, according to a standardized protocol, the phenomenology and natural history of tremor syndromes. RESULTS: In the first year of activity, 679 patients have been recruited. The frequency of tremor syndromes varied from 32% of ET and 41% of ET-plus to less than 3% of rare forms, including focal tremors (2.30%), task-specific tremors (1.38%), isolated rest tremor (0.61%), and orthostatic tremor (0.61%). Patients with ET-plus were older and had a higher age at onset than ET, but a shorter disease duration, which might suggest that ET-plus is not a disease stage of ET. Familial aggregation of tremor and movement disorders was present in up to 60% of ET cases and in about 40% of patients with tremor combined with dystonia. The body site of tremor onset was different between tremor syndromes, with head tremor being most commonly, but not uniquely, associated with dystonia. CONCLUSIONS: The TITAN study is anticipated to provide clinically relevant prospective information about the clinical correlates of different tremor syndromes and their specific outcomes and might serve as a basis for future etiological, pathophysiological, and therapeutic research

    TRPC3 and TRPC6 are essential for angiotensin II-induced cardiac hypertrophy

    No full text
    Angiotensin (Ang) II participates in the pathogenesis of heart failure through induction of cardiac hypertrophy. Ang II-induced hypertrophic growth of cardiomyocytes is mediated by nuclear factor of activated T cells (NFAT), a Ca(2+)-responsive transcriptional factor. It is believed that phospholipase C (PLC)-mediated production of inositol-1,4,5-trisphosphate (IP(3)) is responsible for Ca(2+) increase that is necessary for NFAT activation. However, we demonstrate that PLC-mediated production of diacylglycerol (DAG) but not IP(3) is essential for Ang II-induced NFAT activation in rat cardiac myocytes. NFAT activation and hypertrophic responses by Ang II stimulation required the enhanced frequency of Ca(2+) oscillation triggered by membrane depolarization through activation of DAG-sensitive TRPC channels, which leads to activation of L-type Ca(2+) channel. Patch clamp recordings from single myocytes revealed that Ang II activated DAG-sensitive TRPC-like currents. Among DAG-activating TRPC channels (TRPC3, TRPC6, and TRPC7), the activities of TRPC3 and TRPC6 channels correlated with Ang II-induced NFAT activation and hypertrophic responses. These data suggest that DAG-induced Ca(2+) signaling pathway through TRPC3 and TRPC6 is essential for Ang II-induced NFAT activation and cardiac hypertrophy

    Phenotypic variability in acquired and idiopathic dystonia

    No full text
    BackgroundTo date, a few studies have systematically investigated differences in the clinical spectrum between acquired and idiopathic dystonias. ObjectivesTo compare demographic data and clinical features in patients with adult-onset acquired and idiopathic dystonias. MethodsPatients were identified from among those included in the Italian Dystonia Registry, a multicenter Italian dataset of patients with adult-onset dystonia. Study population included 116 patients with adult-onset acquired dystonia and 651 patients with isolated adult-onset idiopathic dystonia. ResultsComparison of acquired and idiopathic dystonia revealed differences in the body distribution of dystonia, with oromandibular dystonia, limb and trunk dystonia being more frequent in patients with acquired dystonia. The acquired dystonia group was also characterized by lower age at dystonia onset, greater tendency to spread, lower frequency of head tremor, sensory trick and eye symptoms, and similar frequency of neck pain associated with CD and family history of dystonia/tremor. ConclusionsThe clinical phenomenology of dystonia may differ between acquired and idiopathic dystonia, particularly with regard to the body localization of dystonia and the tendency to spread. This dissimilarity raises the possibility of pathophysiological differences between etiologic categories
    corecore