40 research outputs found

    Consistency in scalable systems

    Full text link
    [EN] While eventual consistency is the general consistency guarantee ensured in cloud environments, stronger guarantees are in fact achievable. We show how scalable and highly available systems can provide processor, causal, sequential and session consistency during normal functioning. Failures and network partitions negatively affect consistency and generate divergence. After the failure or the partition, reconciliation techniques allow the system to restore consistency.This work has been supported by EU FEDER and Spanish MICINN under research grants TIN2009-14460-C03-01 and TIN2010-17193.Ruiz Fuertes, MI.; PallardĂł Lozoya, MR.; Muñoz-EscoĂ­, FD. (2012). Consistency in scalable systems. En On the Move to Meaningful Internet Systems: OTM 2012. Springer Verlag (Germany). 7566:549-565. https://doi.org/10.1007/978-3-642-33615-7_7S5495657566Ahamad, M., Bazzi, R.A., John, R., Kohli, P., Neiger, G.: The power of processor consistency. In: Proceedings of the Fifth Annual ACM Symposium on Parallel Algorithms and Architectures, SPAA 1993, pp. 251–260. ACM, New York (1993), http://doi.acm.org/10.1145/165231.165264Alvarez, A., ArĂ©valo, S., Cholvi, V., FernĂĄndez, A., JimĂ©nez, E.: On the Interconnection of Message Passing Systems. Inf. Process. Lett. 105(6), 249–254 (2008)Amazon Web Services LLC: Amazon Simple Storage Service (S3). Website (March 2011), http://aws.amazon.com/s3/Baker, J., Bond, C., Corbett, J.C., Furman, J.J., Khorlin, A., Larson, J., LĂ©on, J., Li, Y., Lloyd, A., Yushprakh, V.: Megastore: Providing Scalable, Highly Available Storage for interactive services. In: 5th Biennial Conf. on Innovative Data Systems Research (CIDR), Asilomar, CA, USA, pp. 223–234 (January 2011)Baldoni, R., Beraldi, R., Friedman, R., van Renesse, R.: The Hierarchical Daisy Architecture for Causal Delivery. Distributed Systems Engineering 6(2), 71–81 (1999)Bernstein, P.A., Hadzilacos, V., Goodman, N.: Concurrency Control and Recovery in Database Systems. Addison-Wesley (1987)Bernstein, P.A., Reid, C.W., Das, S.: Hyder - A Transactional Record Manager for Shared Flash. In: 5th Biennial Conf. on Innovative Data Systems Research (CIDR), Asilomar, CA, USA, pp. 9–20 (January 2011)Bershad, B.N., Zekauskas, M.J., Sawdon, W.A.: The Midway Distributed Shared Memory System. In: Proc. IEEE CompCon Conf. (1993)Brewer, E.A.: Towards Robust Distributed Systems (Abstract). In: Proc. ACM Symp. Princ. Distrib. Comput., p. 7 (2000)Budhiraja, N., Marzullo, K., Schneider, F.B., Toueg, S.: The Primary-Backup Approach. In: Mullender, S.J. (ed.) Distributed Systems, 2nd edn., ch. 8, pp. 199–216. Addison-Wesley, ACM Press (1993)Campbell, D.G., Kakivaya, G., Ellis, N.: Extreme Scale with Full SQL Language Support in Microsoft SQL Azure. In: Intnl. Conf. on Mngmnt. of Data (SIGMOD), pp. 1021–1024. ACM, New York (2010), http://doi.acm.org/10.1145/1807167.1807280Cholvi, V., JimĂ©nez, E., Anta, A.F.: Interconnection of distributed memory models. J. Parallel Distrib. Comput. 69(3), 295–306 (2009)Cooper, B.F., Ramakrishnan, R., Srivastava, U., Silberstein, A., Bohannon, P., Jacobsen, H., Puz, N., Weaver, D., Yerneni, R.: PNUTS: Yahoo!’s hosted data serving platform. PVLDB 1(2), 1277–1288 (2008)Daudjee, K., Salem, K.: Lazy Database Replication with Ordering Guarantees. In: Proc. Int. Conf. Data Eng., pp. 424–435. IEEE-CS (2004)Daudjee, K., Salem, K.: Lazy Database Replication with Snapshot Isolation. In: Proc. Int. Conf. Very Large Data Bases, pp. 715–726. ACM (2006)DeCandia, G., Hastorun, D., Jampani, M., Kakulapati, G., Lakshman, A., Pilchin, A., Sivasubramanian, S., Vosshall, P., Vogels, W.: Dynamo: Amazon’s Highly Available Key-value Store. In: ACM Symp. Oper. Syst. Princ., pp. 205–220 (2007)FernĂĄndez, A., JimĂ©nez, E., Cholvi, V.: On the interconnection of causal memory systems. J. Parallel Distrib. Comput. 64(4), 498–506 (2004)Gilbert, S., Lynch, N.A.: Brewer’s Conjecture and the Feasibility of Consistent, Available, Partition-Tolerant Web Services. ACM SIGACT News 33(2), 51–59 (2002)Goodman, J.R.: Cache Consistency and Sequential Consistency. Tech. Rep. 61, SCI Committee (March 1989)Gray, J., Helland, P., O’Neil, P.E., Shasha, D.: The Dangers of Replication and a Solution. In: Proc. ACM SIGMOD Int. Conf. Manage. Data, pp. 173–182. ACM (1996)Helland, P., Campbell, D.: Building on Quicksand. In: Proc. Bienn. Conf. Innov. Data Syst. Research (2009), www.crdrdb.orgHutto, P., Ahamad, M.: Slow Memory: Weakening Consistency to Enhance Concurrency in Distributed Shared Memories. In: Proceedings of the 10th International Conference on Distributed Computing Systems, pp. 302–311 (May 1990)Johnson, S., Jahanian, F., Shah, J.: The Inter-group Router Approach to Scalable Group Composition. In: ICDCS, pp. 4–14 (1999)Kraska, T., Hentschel, M., Alonso, G., Kossmann, D.: Consistency Rationing in the Cloud: Pay only when it matters. PVLDB 2(1), 253–264 (2009)Lamport, L.: How to Make a Multiprocessor Computer that Correctly Executes multiprocess programs. IEEE Trans. Computers 28(9), 690–691 (1979)Lipton, R.J., Sandberg, J.S.: Pram: A Scalable Shared Memory. Tech. Rep. CS-TR-180-88, Princeton University, Department of Computer Science (September 1988)Mosberger, D.: Memory Consistency Models. Operating Systems Review 27(1), 18–26 (1993)Ruiz-Fuertes, M.I., Muñoz-EscoĂ­, F.D.: Refinement of the One-Copy Serializable Correctness Criterion. Tech. Rep. ITI-SIDI-2011/004, Instituto TecnolĂłgico de InformĂĄtica, Valencia, Spain (November 2011)Stonebraker, M., Madden, S., Abadi, D.J., Harizopoulos, S., Hachem, N., Helland, P.: The End of an Architectural Era (It’s Time for a Complete Rewrite). In: 33rd Intnl. Conf. on Very Large Data Bases (VLDB), pp. 1150–1160. ACM Press, Vienna (2007)Terry, D.B., Demers, A.J., Petersen, K., Spreitzer, M., Theimer, M., Welch, B.B.: Session Guarantees for Weakly Consistent Replicated Data. In: Proc. Int. Conf. Parallel Distrib. Inform. Syst., pp. 140–149. IEEE-CS (1994)Vogels, W.: Eventually Consistent. Communications of the ACM (CACM) 52(1), 40–44 (2009)VoltDB, Inc.: VoltDB technical overview: A high performance, scalable RDBMS for Big Data, high velocity OLTP and realtime analytics. Website (April 2012), http://voltdb.com/sites/default/files/PDFs/VoltDBTechnicalOverview_April_2012.pdfWiesmann, M., Schiper, A.: Comparison of Database Replication Techniques Based on Total Order Broadcast. IEEE T. Knowl. Data En. 17(4), 551–566 (2005

    Scalability approaches for causal multicast: a survey

    Get PDF
    The final publication is available at Springer via http://dx.doi.org/10.1007/s00607-015-0479-0Many distributed services need to be scalable: internet search, electronic commerce, e-government... In order to achieve scalability, high availability and fault tolerance, such applications rely on replicated components. Because of the dynamics of growth and volatility of customer markets, applications need to be hosted by adaptive, highly scalable systems. In particular, the scalability of the reliable multicast mechanisms used for supporting the consistency of replicas is of crucial importance. Reliable multicast might propagate updates in a pre-determined order (e.g., FIFO, total or causal). Since total order needs more communication rounds than causal order, the latter appears to be the preferable candidate for achieving multicast scalability, although the consistency guarantees based on causal order are weaker than those of total order. This paper provides a historical survey of different scalability approaches for reliable causal multicast protocols.This work was supported by European Regional Development Fund (FEDER) and Ministerio de Economia y Competitividad (MINECO) under research Grant TIN2012-37719-C03-01.Juan MarĂ­n, RD.; Decker, H.; ArmendĂĄriz ĂĂ±igo, JE.; Bernabeu AubĂĄn, JM.; Muñoz EscoĂ­, FD. (2016). Scalability approaches for causal multicast: a survey. Computing. 98(9):923-947. https://doi.org/10.1007/s00607-015-0479-0S923947989Adly N, Nagi M (1995) Maintaining causal order in large scale distributed systems using a logical hierarchy. In: IASTED Intnl Conf on Appl Inform, pp 214–219Aguilera MK, Chen W, Toueg S (1997) Heartbeat: a timeout-free failure detector for quiescent reliable communication. In: 11th Intnl Wshop on Distrib Alg (WDAG), SaarbrĂŒcken, pp 126–140Almeida JB, Almeida PS, Baquero C (2004) Bounded version vectors. In: 18th Intnl Conf Distrib Comput (DISC), Amsterdam, pp 102–116Almeida PS, Baquero C, Fonte V (2008) Interval tree clocks. In: 12th Intnl Conf Distrib Syst (OPODIS), Luxor, pp 259–274Almeida S, LeitĂŁo J, Rodrigues LET (2013) ChainReaction: a causal+ consistent datastore based on chain replication. In: 8th EuroSys Conf, Czech Republic, pp 85–98Álvarez A, ArĂ©valo S, Cholvi V, FernĂĄndez A, JimĂ©nez E (2008) On the interconnection of message passing systems. Inf Process Lett 105(6):249–254Amir Y, Stanton J (1998) The Spread wide area group communication system. Tech. rep., CDNS-98-4, The Center for Networking and Distributed Systems, The Johns Hopkins UnivAmir Y, Dolev D, Kramer S, Malki D (1992) Transis: a communication subsystem for high availability. In: 22nd Intnl Symp Fault-Tolerant Comp (FTCS), Boston, pp 76–84Anastasi G, Bartoli A, Spadoni F (2001) A reliable multicast protocol for distributed mobile systems: design and evaluation. IEEE Trans Parallel Distrib Syst 12(10):1009–1022Bailis P, Ghodsi A, Hellerstein JM, Stoica I (2013) Bolt-on causal consistency. In: Intnl Conf Mgmnt Data (SIGMOD), New York, pp 761–772Baldoni R, Raynal M, Prakash R, Singhal M (1996) Broadcast with time and causality constraints for multimedia applications. In: 22nd Intnl Euromicro Conf, Prague, pp 617–624Baldoni R, Friedman R, van Renesse R (1997) The hierarchical daisy architecture for causal delivery. In: 17th Intnl Conf Distrib Comput Syst (ICDCS), Maryland, pp 570–577Ban B (2002) JGroups—a toolkit for reliable multicast communication. http://www.jgroups.orgBaquero C, Almeida PS, Shoker A (2014) Making operation-based CRDTs operation-based. In: 14th Intnl Conf Distrib Appl Interop Syst (DAIS), Berlin, pp 126–140Benslimane A, Abouaissa A (2002) Dynamical grouping model for distributed real time causal ordering. Comput Commun 25:288–302Birman KP, Joseph TA (1987) Reliable communication in the presence of failures. ACM Trans Comput Syst 5(1):47–76Birman KP, Schiper A, Stephenson P (1991) Lightweigt causal and atomic group multicast. ACM Trans Comput Syst 9(3):272–314Cachin C, Guerraoui R, Rodrigues LET (2011) Introduction to reliable and secure distributed programming, 2nd edn. Springer, BerlinChandra P, Gambhire P, Kshemkalyani AD (2004) Performance of the optimal causal multicast algorithm: a statistical analysis. IEEE Trans Parall Distr 15(1):40–52Chandra TD, Toueg S (1996) Unreliable failure detectors for reliable distributed systems. J ACM 43(2):225–267de Juan-MarĂ­n R, Cholvi V, JimĂ©nez E, Muñoz-EscoĂ­ FD (2009) Parallel interconnection of broadcast systems with multiple FIFO channels. In: 11th Intnl Symp on Distrib Obj, Middleware and Appl (DOA), Vilamoura, LNCS, vol 5870, pp 449–466DĂ©fago X, Schiper A, UrbĂĄn P (2004) Total order broadcast and multicast algorithms: taxonomy and survey. ACM Comput Surv 36(4):372–421Demers AJ, Greene DH, Hauser C, Irish W, Larson J, Shenker S, Sturgis HE, Swinehart DC, Terry DB (1987) Epidemic algorithms for replicated database maintenance. In: 6th ACM Symp on Princ of Distrib Comput (PODC), Canada, pp 1–12Du J, Elnikety S, Roy A, Zwaenepoel W (2013) Orbe: scalable causal consistency using dependency matrices and physical clocks. In: ACM Symp on Cloud Comput (SoCC), Santa Clara, pp 11:1–11:14FernĂĄndez A, JimĂ©nez E, Cholvi V (2000) On the interconnection of causal memory systems. In: 19th Annual ACM Symp on Princ of Distrib Comput (PODC), Portland, pp 163–170Fidge CJ (1988) Timestamps in message-passing systems that preserve the partial ordering. In: 11th Australian Comput Conf, pp 56–66Friedman R, Vitenberg R, Chockler G (2003) On the composability of consistency conditions. Inf Process Lett 86(4):169–176Gilbert S, Lynch N (2002) Brewer’s conjecture and the feasibility of consistent, available, partition-tolerant web services. SIGACT News 33(2):51–59Gray J, Helland P, O’Neil PE, Shasha D (1996) The dangers of replication and a solution. In: SIGMOD Conf, pp 173–182Hadzilacos V, Toueg S (1993) Fault-tolerant broadcasts and related problems. In: Mullender S (ed) Distributed systems, chap 5, 2nd edn. ACM Press, pp 97–145Johnson S, Jahanian F, Shah J (1999) The inter-group router approach to scalable group composition. In: 19th Intnl Conf on Distrib Comput Syst (ICDCS), Austin, pp 4–14Kalantar MH, Birman KP (1999) Causally ordered multicast: the conservative approach. In: 19th Intnl Conf on Distrib Comput Syst (ICDCS), Austin, pp 36–44Kawanami S, Enokido T, Takizawa M (2004) A group communication protocol for scalable causal ordering. In: 18th Intnl Conf on Adv Inform Netw Appl (AINA), Fukuoka, pp 296–302Kawanami S, Nishimura T, Enokido T, Takizawa M (2005) A scalable group communication protocol with global clock. In: 19th Intnl Conf on Adv Inform Netw Appl (AINA), Taipei, pp 625–630Kshemkalyani AD, Singhal M (1998) Necessary and sufficient conditions on information for causal message ordering and their optimal implementation. Distrib Comput 11(2):91–111Kshemkalyani AD, Singhal M (2011) Distributed computing: principles, algorithms, and systems, 2nd edn. Cambridge University Press, New YorkLadin R, Liskov B, Shrira L, Ghemawat S (1992) Providing high availability using lazy replication. ACM Trans Comput Syst 10(4):360–391Lamport L (1978) Time, clocks, and the ordering of events in a distributed system. Commun ACM 21(7):558–565Laumay P, Bruneton E, de Palma N, Krakowiak S (2001) Preserving causality in a scalable message-oriented middleware. In: Intnl Conf on Distrib Syst Platf (Middleware), pp 311–328Liu N, Liu M, Cao J, Chen G, Lou W (2010) When transportation meets communication: V2P over VANETs. In: 30th Intnl Conf Distrib Comput Syst (ICDCS), GenovaLwin CH, Mohanty H, Ghosh RK (2004) Causal ordering in event notification service systems for mobile users. In: Intnl Conf Inform Tech: Coding Comput (ITCC), Las Vegas, pp 735–740Mahajan P, Alvisi L, Dahlin M (2011) Consistency, availability and covergence. Tech. rep., UTCS TR-11-22, The University of Texas at AustinMatos M, Sousa A, Pereira J, Oliveira R, Deliot E, Murray P (2009) CLON: overlay networks and gossip protocols for cloud environments. In: 11th Intnl Symp on Dist Obj, Middleware and Appl (DOA), Vilamoura, LNCS, vol 5870, pp 549–566Mattern F (1989) Virtual time and global states of distributed systems. In: Parallel and distributed algorithms, North-Holland, pp 215–226Mattern F, FĂŒnfrocken S (1994) A non-blocking lightweight implementation of causal order message delivery. Lect Notes Comput Sci 938:197–213Meldal S, Sankar S, Vera J (1991) Exploiting locality in maintaining potential causality. In: 10th ACM Symp on Princ of Distrib Comp (PODC), Montreal, pp 231–239Meling H, Montresor A, Helvik BE, Babaoglu Ö (2008) Jgroup/ARM: a distributed object group platform with autonomous replication management. Softw Pract Exp 38(9):885–923Mosberger D (1993) Memory consistency models. Oper Syst Rev 27(1):18–26MostĂ©faoui A, Raynal M (1993) Causal multicast in overlapping groups: towards a low cost approach. In: 4th Intnl Wshop on Future Trends of Distrib Comp Syst (FTDCS), Lisbon, pp 136–142MostĂ©faoui A, Raynal M, Travers C, Patterson S, Agrawal D, El Abbadi A (2005) From static distributed systems to dynamic systems. In: 24th Symp on Rel Distrib Syst (SRDS), Orlando, pp 109–118Nishimura T, Hayashibara N, Takizawa M, Enokido T (2005) Causally ordered delivery with global clock in hierarchical group. In: ICPADS (2), Fukuoka, pp 560–564Parker DS Jr, Popek GJ, Rudisin G, Stoughton A, Walker BJ, Walton E, Chow JM, Edwards DA, Kiser S, Kline CS (1983) Detection of mutual inconsistency in distributed systems. IEEE Trans Softw Eng 9(3):240–247Pascual-Miret L (2014) Consistency models in modern distributed systems. An approach to eventual consistency. Master’s thesis, Depto. de Sistemas InformĂĄticos y ComputaciĂłn, Univ. PolitĂšcnica de ValĂšnciaPascual-Miret L, GonzĂĄlez de MendĂ­vil JR, BernabĂ©u-AubĂĄn JM, Muñoz-EscoĂ­ FD (2015) Widening CAP consistency. Tech. rep., IUMTI-SIDI-2015/003, Univ. PolitĂšcnica de ValĂšncia, ValenciaPeterson LL, Buchholz NC, Schlichting RD (1989) Preserving and using context information in interprocess communication. ACM Trans Comput Syst 7(3):217–246Pomares HernĂĄndez S, Fanchon J, Drira K, Diaz M (2001) Causal broadcast protocol for very large group communication systems. In: 5th Intnl Conf on Princ of Distrib Syst (OPODIS), Manzanillo, pp 175–188Prakash R, Baldoni R (2004) Causality and the spatial-temporal ordering in mobile systems. Mobile Netw Appl 9(5):507–516Prakash R, Raynal M, Singhal M (1997) An adaptive causal ordering algorithm suited to mobile computing environments. J Parallel Distrib Comput 41(2):190–204Raynal M, Schiper A, Toueg S (1991) The causal ordering abstraction and a simple way to implement it. Inf Process Lett 39(6):343–350Rodrigues L, VerĂ­ssimo P (1995a) Causal separators and topological timestamping: An approach to support causal multicast in large-scale systems. Tech. Rep. AR-05/95, Instituto de Engenharia de Sistemas e Computadores (INESC), LisbonRodrigues L, VerĂ­ssimo P (1995b) Causal separators for large-scale multicast communication. In: 15th Intnl Conf on Distrib Comput Syst (ICDCS), Vancouver, pp 83–91Schiper A, Eggli J, Sandoz A (1989) A new algorithm to implement causal ordering. In: 3rd Intnl Wshop on Distrib Alg (WDAG), Nice, pp 219–232Schiper N, Pedone F (2010) Fast, flexible and highly resilient genuine FIFO and causal multicast algorithms. In: 25th ACM Symp on Applied Comp (SAC), Sierre, pp 418–422Shapiro M, Preguiça NM, Baquero C, Zawirski M (2011) Convergent and commutative replicated data types. Bull EATCS 104:67–88Shen M, Kshemkalyani AD, Hsu TY (2015) Causal consistency for geo-replicated cloud storage under partial replication. In: Intnl Paral Distrib Proces Symp (IPDPS) Wshop, Hyderabad, pp 509–518Singhal M, Kshemkalyani AD (1992) An efficient implementation of vector clocks. Inf Process Lett 43(1):47–52Sotomayor B, Montero RS, Llorente IM, Foster IT (2009) Virtual infrastructure management in private and hybrid clouds. IEEE Internet Comput 13(5):14–22Stephenson P (1991) Fast ordered multicasts. PhD thesis, Dept. of Comp. Sc., Cornell Univ., IthacaStonebraker M (1986) The case for shared nothing. IEEE Database Eng Bull 9(1):4–9Vogels W (2009) Eventually consistent. Commun ACM 52(1):40–44Wischhof L, Ebner A, Rohling H (2005) Information dissemination in self-organizing intervehicle networks. IEEE Trans Intell Transp 6(1):90–101Yavatkar R (1992) MCP: a protocol for coordination and temporal synchronization in multimedia collaborative applications. In: 12th Intnl Conf on Distrib Comput Syst (ICDCS), Yokohama, pp 606–613Yen LH, Huang TL, Hwang SY (1997) A protocol for causally ordered message delivery in mobile computing systems. Mobile Netw Appl 2(4):365–372Zawirski M, Preguiça N, Duarte S, Bieniusa A, Balegas V, Shapiro M (2015) Write fast, read in the past: causal consistency for client-side applications. In: 16th Intnl Middleware Conf, VancouverZhou S, Cai W, Turner SJ, Lee BS, Wei J (2007) Critical causal order of events in distributed virtual environments. ACM Trans Mult Comp Commun Appl 3(3):1

    Towards a standardization of biomethane potential tests

    Get PDF
    8 PĂĄginasProduction of biogas from different organic materials is a most interesting source of renewable energy. The biomethane potential (BMP) of these materials has to be determined to get insight in design parameters for anaerobic digesters. A workshop was held in June 2015 in Leysin Switzerland to agree on common solutions to the conundrum of inconsistent BMP test results. A discussion covers actions and criteria that are considered compulsory ito accept and validate a BMP test result; and recommendations concerning the inoculum substrate test setup and data analysis and reporting ito obtain test results that can be validated and reproduced.The workshop in Leysin, Switzerland, has been financed by the Swiss Federal Office for Energy, and co-sponsored by Bioprocess Control Sweden AB, Lund, Sweden. The authors thank Alexandra Maria Murray for editing the English

    Neuromatch Academy: a 3-week, online summer school in computational neuroscience

    Get PDF

    Making Paths Explicit in the Scout Operating System

    No full text
    This paper makes a case for paths as an explicit abstraction in operating system design. Paths provide a unifying infrastructure for several OS mechanisms that have been introduced in the last several years, including fbufs, integrated layer processing, packet classifiers, code specialization, and migrating threads. This paper articulates the potential advantages of a path-based OS structure, describes the specific path architecture implemented in the Scout OS, and demonstrates the advantages in a particular application domain---receiving, decoding, and displaying MPEG-compressed video. 1 Introduction Layering is a fundamental structuring technique with a long history in system design. From early work on layered operating systems and network architectures [12, 32], to more recent advances in stackable systems [27, 15, 14, 26], layering has played a central role in managing complexity, isolating failure, and enhancing configurability. This paper describes a complementary, but equally f..

    Protocol Latency: MIPS and Reality

    No full text
    This paper describes several techniques designed to improve protocol latency, and reports on their effectiveness when measured on a modern RISC processor---the DEC Alpha. We found that memory bandwidth---whichhas long been known to dominate network throughput---is also a key factor in protocol latency. The techniques are designed to increase the effectiveness of the instruction-cache and result in reduced processor stall rates. Department of Computer Science The University of Arizona Tucson, AZ 85721 1 This work supported in part by ARPA Contract DABT63-91-C-0030, by Digital Equipment Corporation. 1 Introduction Communication latency is often just as important as throughput in distributed systems [TL93], and for this reason, researchers have analyzed the latency characteristics of common network protocols like TCP/IP [KP93, CJRS89, Jac93]. These studies have shown that, despite the rich functionality offered by TCP/IP, the processing overheads are actually quite low. This paper rev..

    Fast and general software solution to mutual exclusion on uniprocessors

    No full text
    This paper presents a technique to solve the mutual exclusion problem for uniprocessors purely in software. The idea is to execute atomic sequences without any hardware protection and, in the rare case that the atomic sequence is interrupted, to rollforward to the end of the sequence. The main contribution of this paper is to discuss the OS-related issues of this technique and to demonstrate its practicality, both in terms of flexibility and performance. It proposes a purely software-based technique that achieves mutual exclusion without any memory-accesses. Experiments show that this technique has the potential to outperform equivalent hardware mechanisms
    corecore